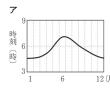
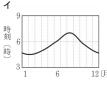
- 1 太陽や月などの天体の動きに興味をもったFさんは、数日後に日本の各地で日食が観測できることを知 り、日食の当日に大阪市にある自宅近くで観測を行うことにした。次の問いに答えなさい。
- (1) 地球よりも太陽に近い軌道を公転している惑星は二つあり、そのうちの一つは金星である。もう一つは 何か。惑星の名称を漢字2字で書きなさい。
- (2) 太陽は、地球から最も近い距離にある恒星である。太陽から放出された光や熱のエネルギーは、地球に おける大気の運動や生命活動に影響を与えている。
- ① 太陽の表面には、黒点が現れることがある。黒点について述べた次の文中の ②〔), (b) () から適切なものをそれぞれ一つずつ選び、記号を○で囲みなさい。

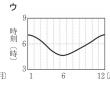
黒点の温度は、太陽の表面の温度である約6000℃よりも ②〔 ア 低い イ 高い 〕。 黒点を数日間観測すると、黒点の位置が少しずつ一方向へ移動していくように見えるが、これは (b) 「 **ウ** 地球の公転 **エ** 太陽の自転 〕が主な原因である。

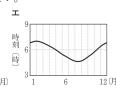
② 太陽と地球との距離は約1億5000万kmである。光の速さでは1億5000万kmの距離を進むのに 何秒かかるか、求めなさい。ただし、光の速さは30万 km/s であるものとする。

【Fさんが日食について事前に調べたこと】


- ・日食は、太陽、月、地球の順に三つの天体が並び、地球から見たときに太陽が月で隠されることによっ て起こる現象である。
- 日食が起こるのは、©「 ア 新月 イ 満月 **ウ** 上弦の月 エ 下弦の月 〕の ときである。
- ・今回の日食では、太陽の全部が隠されることはない。
- 表 I は、F さんの自宅がある大阪 表 I 市を含む4地点での、日の出の時 刻、日食の開始時刻、日食の終了 時刻をまとめたものである。


	郝覇市	大阪市	静岡市	礼幌市
日の出の時刻	5時40分	4時51分	4時39分	4時06分
日食の開始時刻	6時06分	6時17分	6時18分	6時33分
日食の終了時刻	8時30分	8時54分	8時59分	9時18分


- (3) 上の文中の © 〔 〕 から適切なものを一つ選び、記号を○で囲みなさい。
- (4) 表 I から読み取れることについて述べた次の文中の @ []、@ [] から適切なものをそれ ぞれ一つずつ選び、記号を○で囲みなさい。


表 I に示した 4 地点において、日の出の時刻が早いほど、日食の開始時刻や日食の終了時刻は ⑥[ア早い イ遅い]。また、日食の開始から終了までの時間の長さは、4地点ですべて (e) 「ウ 同じである エ 異なる 」。

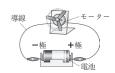
(5) 日の出の時刻は日ごとに少しずつ変化する。次のア~エのうち、大阪市での日の出の時刻の変化を表し たグラフとして最も適しているものはどれか。一つ選び、記号を○で囲みなさい。

【観測】Fさんは自宅近くで、図Iのように日食観測用のグ ラスを用いて、6時20分から日食の観測を行った。図Ⅱ は、Fさんが7時20分に観測した日食のようすを模式的 に表したものである。この日、禹日本列島の近くを低気圧 が通過したが、Fさんは雲が広がっていた時間帯でも、薄 い雲を通して日食を観測することができた。

- (6) 下線部局について、低気圧が近づくとくもりや雨になりやすい。次のア〜エのうち、低気圧の一般的 な特徴について述べた文として最も適しているものはどれか。一つ選び、記号を○で囲みなさい。
- ア 地表付近では低気圧の外側から中心に向かって風が吹き、低気圧の中心付近で下降気流が起こる。
- イ 地表付近では低気圧の外側から中心に向かって風が吹き、低気圧の中心付近で上昇気流が起こる。
- ウ 地表付近では低気圧の中心から外側に向かって風が吹き、低気圧の中心付近で下降気流が起こる。
- エ 地表付近では低気圧の中心から外側に向かって風が吹き、低気圧の中心付近で上昇気流が起こる。
- (7) 図Ⅲは、Fさんが6時50分、7時20分、7時50分に観測した日食の ようすを模式的に表したものである。図Ⅲについて述べた次の文中の (f) []、⑧ [] から適切なものをそれぞれ一つずつ選び、記 号を○で囲みなさい。

ようすを表したものである。図Ⅲから、太陽も月も日周運動によってほぼ 同じ経路を移動していたことが分かり、また、太陽は月に比べて日周運動 によって移動する速さが ® 〔 **ウ** 遅かった エ 速かった 〕こ とが分かる。

(8) Fさんが日食の観測を行った日から2週間後、日本の各地で月食が観測された。次の文は、日食と月食 に適している内容を、「地球」の語を用いて書きなさい。

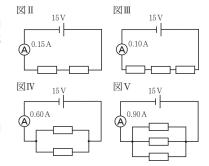

日食は、太陽、月、地球の順に三つの天体が並び、地球から見て月が太陽と同じ向きにあるときに、 太陽が月で隠されることによって起こる現象である。地球から見て太陽の全部が月で隠されると皆既日 食となる。一方、月食は、太陽、地球、月の順に三つの天体が並び、地球から見て月が太陽と反対の向 n に入ると皆既月食となる。

2 家庭で複数の電気器具をコンセントにつないで使用するとき、それらの電気器具どうしは直列ではなく並列につながっている。このことに興味をもったSさんは、直列回路と並列回路の特徴を調べる実験をK先生と一緒に行い、考察した。次の問いに答えなさい。ただし、接続したモーターや抵抗器以外の電気抵抗は考えないものとし、モーターや抵抗器の電気抵抗は一定であるものとする。

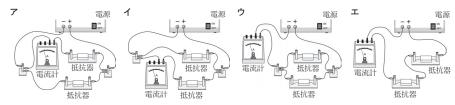
コンセント

(1) 右の図のような回路に電流が流れているとき、一の電気をもつ粒子が導線内を一極から十極の向きに移動している。このような一の電気をもつ粒子は何と呼ばれているか。漢字2字で書きなさい。

(2) 電源の一極側の導線を電流計の500 mA の一端子につないで回路に電流を流したところ、電流計の針は図Iの位置を示した。次のア〜エのうち、図Iから読み取れる電流の大きさとして最も適しているものを一つ選び、記号を○で囲みなさい。


7 3.40 m A 1 34.0 m A

ウ 340 mA エ 3.40 A



【実験 1 】同じ電気抵抗をもつ抵抗器を五つ用いて、図Ⅱと図Ⅲで表される二つの直列回路をつくった。それぞれの回路における電源の電圧を 15 V に設定して 30 秒間電流を流した。電流計の示す値は、図Ⅱの回路では 0.15 A、図Ⅲの回路では 0.10 Aであった。

【実験 2 】実験 1 で使用した抵抗器を五つ用いて、図IVと図Vで表される二つの並列回路をつくった。それぞれの回路における電源の電圧を 15 Vに設定して 30 秒間電流を流した。電流計の示す値は、図IVの回路では 0.60 A、図Vの回路では 0.90 Aであった。

(3) 次のア~エのうち、回路図にしたときに図IVと同じ回路図になるものはどれか。最も適しているものを 一つ選び、記号を○で囲みなさい。

【各抵抗器に加わる電圧と各抵抗器を流れる電流について】

表 I は、実験1と実験2にお表 I いて、各抵抗器に加わる電圧と 各抵抗器を流れる電流について、 S さんがまとめたものである。

衣 1	実順	澰 1	実験 2			
	図Ⅱ	図Ⅲ	⊠IV	⊠V		
各抵抗器に加わる電圧	(a) V	5.0 V	15 V	15 V		
各抵抗器を流れる電流	(b) A	0.10 A	0.30 A	0.30 A		

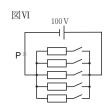
【SさんとK先生の会話】

K先生:実験1と実験2のそれぞれにおいて、抵抗器の数が多くなったときの、各抵抗器によって消費 される電力の変化について考えてみましょう。

Sさん: 8各抵抗器を直列につないだ**実験1**とは違って、各抵抗器を並列につないだ**実験2**においては、各抵抗器によって消費される電力は図 \mathbf{IV} の回路と図 \mathbf{V} の回路で変わりません。

K先生: その通りです。家庭の電気器具が並列につながっているのは、並列回路には電気器具の数が変わっても、電気器具一つ一つで消費される電力は一定で変わらないという利点があるからです。

Sさん:そうか、電球の明るさは、消費される電力によって変わります。電球が明るくなったり暗くなったりして、明るさが安定していないと困りますものね。家庭の電気器具が並列につながっている理由がよく分かりました。


K先生:それは良かったです。しかし、並列回路には回路の一部に大きな電流が流れる危険性もあります。家庭では複数の電気器具を同時に使用することがよくあるため、<u>©回路に大きな電流が流れた場合、安全のために電流の流れを止める装置があります</u>。同時に使用する電気器具の数が多くなりすぎて、回路に大きな電流が流れることがないように注意しましょう。

(5) 下線部圏について、次の文中の © に入れるのに適している数を求めなさい。答えは整数で書くこと。

(6) 電気器具によって消費される電気エネルギーの量を電力量という。次の文は、実験1と実験2において各抵抗器によって消費される電力量について述べたものである。文中の ① に入れるのに適している内容を、「電流」の語を用いて書きなさい。

電力量は、消費される電力と ① によって決まる。実験1と実験2において ② は同じであったので、図Ⅲの回路で各抵抗器によって消費される電力量と、図Vの回路で各抵抗器によって消費される電力量の大小を比較するためには、各抵抗器によって消費される電力の大小のみを比較すればよい。

図VIの回路において、P点を流れる電流を15 A以下にするためには、5 箇所のスイッチのうち、スイッチを同時に入れている箇所を最大で ② 箇所までにしなければならない。スイッチを同時に入れている箇所が ② 箇所であるとき、P点を流れる電流は ① Aとなる。

[3]

- 3 生物の種類の多様性は、進化によって生物が長い年月をかけて変化してきたことで生じたものである。こ のことに興味をもったTさんは、進化による生物のからだの変化について調べ、R先生と一緒に考察した。 次の問いに答えなさい。
- (1) 現在、地球上にはさまざまな動物や植物が存在している。動物のからだも植物のからだも細胞からでき ており、それぞれの細胞のつくりには、核があるなどの共通点がみられる。
- ① 次のア~ウのうち、一般に、核のほかに動物の細胞と植物の細胞に共通してみられるつくりはどれ か。最も適しているものを一つ選び、記号を○で囲みなさい。

ア 葉緑体 イ 細胞膜 ウ 細胞壁

② 動物や植物の細胞の核の中には遺伝子がある。遺伝子について述べた次の文中の ② 、 ⑤ に 入れるのに適している語の組み合わせを、あとの**ア~カ**から一つ選び、記号を○で囲みなさい。

遺伝子の本体は ② という物質であり、② は核の中にある ⑤ に含まれている。 ⑤ の数は生物の種類により決まっている。

ア (a) 細胞質 (b) 染色体

イ (a) 細胞質 (b) DNA

ウ a 染色体 b 細胞質

エ (a) 染色体 (b) DNA

オ a DNA b 細胞質

カ a DNA b 染色体

- (2) 地球の長い歴史を、生物の移り変わりなどをもとに区分したものを地質年代という。
- ① 地質年代について述べた次の文中の ② 、 ② に入れるのに適している語の組み合わせを、 あとのア~エから一つ選び、記号を○で囲みなさい。

地質年代は、古生代、中生代、新生代などに区分される。古生代、中生代、新生代のうち、恐竜や アンモナイトが栄えたのは ② であり、② に区分される期間は ③ である。

- ② 進化によってさまざまな種類の生物が出現してきた一方で、絶滅した生物もいる。アンモナイトは、 すでに絶滅し現在は存在していないが、イカやタコなどと同じ軟体動物であることが分かっている。軟 体動物に共通してみられる、内臓を包む膜は何と呼ばれる膜か、書きなさい。

【Tさんが進化による生物のからだの変化について調べたこと】

- ・現在の見かけの形やはたらきは異なっていても、基本的な内部のつくりが同じで、起源は同じであった と考えられる器官は ® 器官と呼ばれており、生物が進化してきた証拠の一つと考えられている。
- ・クジラやイルカのひれとコウモリの翼は、基本的な骨格のつくりから 🔘 器官であると考えられ ており、それぞれ進化によって長い年月をかけて生息する環境に都合の良い形に変化してきたと考えら れている。
- (3) 上の文中の (e) に入れるのに適している語を書きなさい。
- (4) 地球の長い歴史の中で、動物だけでなく植物も進化してきた。次の文中の ① (1) に入れるのに適して いる語を書きなさい。

陸上では、コケ植物やシダ植物のように、 ① のうと呼ばれる袋をもち、この袋の中にある ① によってふえるなかまが出現した後で、裸子植物や被子植物のように種子によってふえるなかまが出現 したと考えられている。

【TさんとR先生の会話1】

Tさん:植物にも、見かけの形が異なっていても内部のつくりが同じ器官 はあるのでしょうか。

R先生:はい。植物にもそのような器官はあります。ショウガという被子 植物には、図Iに示されているように、「根茎(塊茎)」と呼ばれ る器官があります。根茎は地下にあり根のように見えますが、根 ではなく茎の一種です。ショウガの根茎と一般的な植物の茎は基 本的な内部のつくりが同じです。

Tさん:根茎の見かけの形からはまったく分かりませんでした。実際に ショウガの根茎の内部のつくりを観察してみたいと思います。

(5) ショウガはジャガイモなどと同じように無性生殖でふえることができる植物であり、根茎を切り分けて 土に植えると、根茎から芽が出て新しい個体となる。無性生殖について述べた次の文中の ⑧ [〕、 ┣〔 〕から適切なものをそれぞれ一つずつ選び、記号を○で囲みなさい。

一般に、無性生殖では、® [ア 減数分裂 **イ** 体細胞分裂 〕によって親のからだの一部が新し い個体(子)となり、子の形質は親と ①〔 ウ 同じ形質 エ 異なる形質 〕になる。

【実験】図Ⅱのように、ショウガの根茎の下部を切り取り、 切り口の面を赤く着色した水に約6時間つけた後、切り 口の面と平行に複数の部分に切り分けた。その結果、複数 の部分に切り分けたときにできた断面にはどれも、赤く 染まった部分が全体に散らばって分布しているようすが 観察された。図Ⅲは、根茎を複数の部分に切り分けたとき にできた断面の一つをスケッチしたものである。

図Ⅲ

赤く染まった部分が全体に 散らばって分布している

【TさんとR先生の会話2】

Tさん:図Ⅲ中の赤く染まった部分は、根茎に吸わせた赤く着色した水が通った場所だと考えられるの で、
 でしょうか。

R先生:はい。図Ⅲのように、ショウガの根茎には 💮 が散らばって分布しているというつくりが あることが分かります。このようなつくりをこれまでに見たことはありませんか。

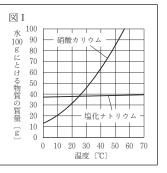
Tさん:図Ⅲのようなつくりは、 ② と共通しています。このことから、ショウガの根茎は単子 葉類の茎の一種であるといえそうです。

R先生:その通りです。生物のある器官について、見かけの形や内部のつくりなどを調べることは、生 物の進化を考える上でとても大切なことです。

(6) 次のア、イのうち、上の文中の 🛛 に入れるのに適しているものを一つ選び、記号を○で囲みなさ い。また、次のウ~カのうち、上の文中の ⑦ に入れる内容として最も適しているものを一つ選 び、記号を○で囲みなさい。

② の選択肢

イ 道管 ア師管


の選択肢

- ウ ホウセンカまたはヒマワリの葉の表面を観察したときの葉脈のつくり
- エ ホウセンカまたはヒマワリの茎に赤く着色した水を吸わせた後で観察した茎の断面のつくり
- オ トウモロコシまたはツユクサの葉の表面を観察したときの葉脈のつくり
- カ トウモロコシまたはツユクサの茎に赤く着色した水を吸わせた後で観察した茎の断面のつくり

4 理科の授業で、水溶液の温度を下げたときに結晶が出てくることを観察したYさんは、溶解度や再結晶に ついて調べ、N先牛と一緒に硝酸カリウム水溶液を用いた実験を行った。次の問いに答えなさい。

【Yさんが溶解度や再結晶について調べたこと】

- 一定量の水に物質をとかして飽和水溶液にしたときに、とけた 物質の質量の値を溶解度という。一般に、溶解度は水 100gに とける物質の最大の質量〔g〕で表す。
- 禹硝酸カリウムや塩化ナトリウムの溶解度曲線は、図Ⅰのよう になる。
- ・固体の物質をいったん水などの溶媒にとかし、再び結晶として 取り出すことを再結晶という。

- (1) 硝酸カリウム水溶液のように、いくつかの物質が混ざり合ってできているものを混合物という。次の ア~エのうち、混合物であるものはどれか。一つ選び、記号を○で囲みなさい。
- ア 空気 **イ** 塩化ナトリウム ウ 水 エ 銅
- (2) 下線部あについて、硝酸カリウムや塩化ナトリウムは水の中で電離する。
- ① 次のア~エのうち、塩化ナトリウムの電離のようすを表した式として最も適しているものはどれか。 一つ選び、記号を○で囲みなさい。

7 NaCl \rightarrow Na²⁻ + Cl²⁺ 1 NaCl \rightarrow Na⁻ + Cl⁺

ウ NaCl → Na²⁺ + Cl²⁻

I NaCl → Na⁺ + Cl⁻

- ② 硝酸カリウムや塩化ナトリウムのように、水にとかしたときに、その水溶液に電流が流れる物質は、 一般に何と呼ばれているか。**漢字3字**で書きなさい。
- (3) 次の文は、図Ⅰの溶解度曲線から分かることを述べたものである。文中の ②〔 〕、⑥〔 〕 から適切なものをそれぞれ一つずつ選び、記号を○で囲みなさい。

図 I から、50 ℃の水 100gにとける硝酸カリウムの最大の質量は ②〔 ア 約 75g イ 約 85g **ウ** 約95g 〕であることが分かる。また、図Iから、硝酸カリウムと塩化ナトリウムの溶解度が等し いときの温度は \mathbb{D} [エ 約 15 \mathbb{C} オ 約 25 \mathbb{C} カ 約 35 \mathbb{C}] であることが分かる。

(4) 図Iにおける硝酸カリウムと塩化ナトリウムの溶解度について述べた次の文中の © 、 @ に 入れるのに適している語の組み合わせを、あとのア~エから一つ選び、記号を○で囲みなさい。

水 100gが入った容器を二つ用意し、一方には硝酸カリウムを、もう一方には塩化ナトリウムをとかし て40℃の飽和水溶液をつくり、それぞれの容器にふたをした。これらの40℃の飽和水溶液をそれぞれ 10℃まで冷やした場合、冷やしたことで出てくる結晶の質量は、図Ⅰから ② の飽和水溶液の方が 小さいと考えられる。これは、硝酸カリウムと塩化ナトリウムを比較した場合、 ② の方が温度の変 化にともなう溶解度の変化が ① ためである。

- ア (C) 硝酸カリウム
- ⊕ 小さい
- **イ** © 硝酸カリウム
- d) 大きい

- エ ② 塩化ナトリウム ③ 大きい

【YさんとN先生の会話1】

N先生:硝酸カリウム水溶液は無色透明なので、濃度が異なっていても見かけだけでは濃度の違いは分かり ません。硝酸カリウム水溶液の濃度の違いを確かめるには、どのような方法があると思いますか。

Yさん:硝酸カリウム水溶液を冷やしていくとよいと思います。水溶液の濃度が異なれば、冷やしていっ た際に、結晶が出始める温度に差が出るのではないでしょうか。

N先牛:では、実際に質量パーセント濃度の異なるいくつかの硝酸カリウム水溶液を用意し、それぞれ冷 やして結晶が出始める温度を調べてみましょう。

【実験1】図Ⅱのような四つの容器A、B、C、Dを 図Ⅱ 用意した。容器A~Dに、質量パーセント濃度の 異なる 40 ℃の硝酸カリウム水溶液を 100gずつ 入れ、それぞれふたをして氷水につけた。容器 A~Dの水溶液の温度を、それぞれ40℃から 10℃まで冷やしていく過程で、結晶が出始めた

各容器に入れた 結晶が出始めた 水溶液の質量 水溶液の温度 容器A 100 g 31℃ 容器B 100 g 27°C 容器C 100 g 21℃ 容器D 100 g

水溶液の温度を記録した。表 I は、その結果をまとめたものである。

- (5) Yさんは、水溶液の質量パーセント濃度や、再結晶で出てくる結晶の質量を、溶解度を用いて求めるこ とにした。次の問いに答えなさい。ただし、水 100 g にとける硝酸カリウムの最大の質量は、31 ℃では 47 g、 27 °C では 41 g、21 °C では 33 g、13 °C では 24 g であるものとする。
- ① 実験1において、容器Aの水溶液の温度が40℃のとき、容器Aの水溶液の質量パーセント濃度は何% であると考えられるか、求めなさい。答えは小数第1位を四捨五入して整数で書くこと。
- ② 実験1において、容器Bの水溶液の温度が13℃のとき、容器Bの水溶液の中には何gの硝酸カリウ ムの結晶が出ていると考えられるか、求めなさい。答えは小数第1位を四捨五入して整数で書くこと。

【YさんとN先生の会話2】

Yさん:実験1では、水溶液の濃度が異なれば、予想していた通り結晶が出始める水溶液の温度に差が出 ました。ところで、表Iから考えると、容器Aの水溶液の中に結晶があるなら、そのときの水溶 液の温度は、31℃よりも低いといえますよね。

N先生:はい。水溶液の中にとけきれなくなった結晶が十分にあるなら、そのときの水溶液の温度は、 表Ⅰに示された結晶が出始めた温度よりも低いと考えてよいですよ。

Yさん:容器A~Dを室内に置いておくと、水溶液の温度は、やがて室温と等しくなるのでしょうか。

N先生:急な温度変化のない室内にしばらく置いた後であれば、水溶液の温度と室温は等しいと考えて

Yさん:ということは、容器Aだけでなく、同時に容器B~Dについても水溶液の中の結晶の有無を確 認することで、そのときのおおよその室温を推定できるのではないでしょうか。

N先生:おもしろい考えですね。では実際に、容器A~Dを実験室に数日間置いた後に、水溶液の中の 結晶の有無を確認して、そのときのおおよその実験室の室温を推定してみましょう。

- 【実験2】容器A~Dを、ふたをしたまま実験室に数日間置いた後に、よく振ってから水溶液のようすを観 察した。その結果、容器Aおよび容器Bの水溶液の中にはとけきれなくなった結晶が十分にあり、容器C および容器Dの水溶液の中には結晶がなかった。
- (6) 実験2について述べた次の文中の @[]、①[] から最も適切なものをそれぞれ一つずつ 選び、記号を○で囲みなさい。ただし、容器A~Dの水溶液の温度と実験室の室温は等しいものとする。

容器Aおよび容器Bの水溶液の中には結晶があったことから、どちらの水溶液も飽和していたこと が分かる。したがって、容器 A および容器 B の水溶液の質量パーセント濃度は @ [ア 容器 A の **イ** 容器 B の水溶液の方が高い **ウ** 等しい 〕 と考えられる。また、 水溶液の方が高い 容器 $A \sim D$ の水溶液のようすを観察したときの実験室の室温は、表 I から ① (エ 31 \mathbb{C} よりも **オ** 27 ℃よりも低く 21 ℃よりも高い **カ** 21 ℃よりも低く 13 ℃よりも 低く 27 ℃よりも高い 高い **+** 13 ℃よりも低い 〕と推定できる。

受験 番号 番 得点

令和7年度大阪府学力検査問題

理科解答用紙

									採点者記入欄
	(1)								2
1	(2)	1	a 7	1	Ф	ウ	エ		2
		2			•		秒		2
	(3)		ア	1		ウ	エ		2
	(4)	@	ア	1	e	ウ	エ		3
	(5)		ア	1	•	ウ	エ		3
	(6)		ア	1		ウ	エ		3
	(7)	(f)	ア	1	(g)	ウ	エ		3
	(8)								3
								'	23

										採	点者記入欄
	(1)	1	7		イ ウ			ウ		2	
3		2	ア	1	ウ	エ	オ		カ	3	
	(2)	1	7		1	ウ		エ		3	
		2							膜	3	
	(3)							器	官	3	
	(4)									3	
	(5)	g	7	1	h	ţ	7	エ		3	
	(6)	(X)	7	1	Ŷ	ゥ	エ	オ	カ	3	
										2 3	

					採点者記入欄
(1)					3
(2)	7	1	ゥ	I	3
(3)	7	1	ゥ	I	3
(4)	(a)			V	2
	Ъ			A	2
(5)				分の1	3
(6)					3
(7)	e	箇所	(f)	A	3
	1	'			/22
	(2) (3) (4) (5) (6)	(2)	(2) 7 1 (3) 7 1 (4) @	(2) 7 1 ½ (3) 7 1 ½ (4) (a) (b) (5)	(2) ア イ ウ エ (3) ア イ ウ エ (4) ② V (5) A (5) 分の1

											_	採点	点者記入欄	
_	(1)		7		1		ウ		_	=		2		
4	(2)	1	ア		1		ウ			L		2		
		2										3		
	(3)	(a)	ア	1	ゥ	b	エ	7.	t	カ		3		
	(4)		7		1		ウ			=		3		
	(5)	1)								%		3		
		2								g		3		
	(6)	e	ア	1	ウ	Œ	エ	オ	カ	+		3		
											•	/22		