大阪HITEC都市デザイン部会の活動を通じて 獲得された技術対策やアイデアについて

ロクールスポット百選・クールロード百選から

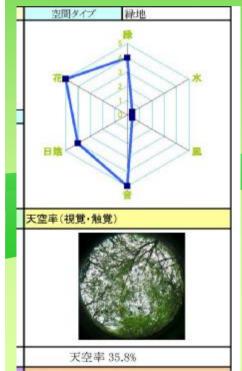
口技術対策やアイデアのとりまとめ

大阪府立大学 名誉教授 植物工場研究センター長 増田 昇

亀崗市 クールスポット:2012年9月 猪名川町 三甲市 宇治市 119カ所を選定 片門鄉 尼崎市 芦屋市 神戸市 奈良市 大和郡山市 天理市 富田林市 橿原市 明日香村 五條市 かつらき町。和歌山線 Google My Maps 。紀の川市

クールスポットの成立場所

並木道 商店街 3.4% 2.5% その他 遊歩道 10.1% 26.1% 社寺仏閣 13.4% 都市公園 22.7% 16.8%


クールスポットの環境要因

木陰+水面+風 6.7% 水面+風 5.0% 木 陰 28.6% 木陰+風 14.3% ドライミスト・<mark>打ち水</mark> 木陰+水面 15.1% 高標高 4.2% 水面(水の存在) ビル陰 8.4% 3.4% 4.2%

クールスポット:森林公園

悪能人扱地教会			
場所	大阪府民の表 ぬかた圏地	クルス	
所在地	東大阪市山手町他	使われ方	

クールスポット:都市公園

朝公園

空間タイプ

天空率(視覚·触覚)

天空率 39.9%

所在地 大阪市西区朝本町1-9

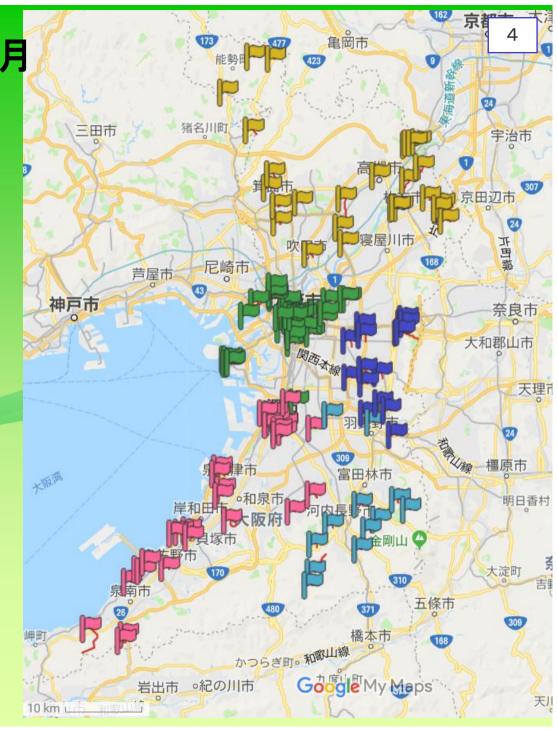
ク―	ルスポッ ト	>: 公開空地
	レヘ小フロ	`. 女洲土地

空間タイプ

天空率(視覚·触覚)

クールスポット: 社寺仏閣

場所	生國魂神社	クールス
所在地	大阪市天王寺区生玉町13-9	使われた




代表的なクールスポットの評価

クールロード:2015年9月

121カ所を選定

クールロードの成立場所

クールロードの環境要因

木陰・ビル 風+水面 その他 風+水面+ 2.4% 4.0% 風 木陰・ビル **木陰・ビル** 8.8% 陰 陰+水面 40.0% 15.2% 木陰・ビル その他単独 風 陰十風 要因 8... 16.0% 5.6%

水の利用

地表水利用

網(ネットワーク)

側溝をネットワークした 新たな親水空間の創造

貯留雨水を街路に流して、 名所を涼化

立体化した自転車道と歩道に、 川を流し、涼しい憩い環境づくり

路地網を活かして、水路ネットワーク

水辺周辺の街路を立体化した 親水空間の創造。

雨水

雨水を利用した打ち水効果 による暑熱環境改善対策

給水ステーションの設置

打ち水供給網

気象予測システムを 効果的に用いた、人口降雨

止水型拠点づくり

DRY/WETの可変性を持った ブラザデザイン

公開空地に薄層水を導入した ブラザデザイン

透水性と滞水性を持った都市 空間の創出

公的スペースのクールスポット化

親水空間(水遊び)の創出

打ち水

体感型水路を活用した打水涼

自動車を利用することで、交通 網打ち水供給網に転換

自転車による打ち水

燃料電池車による散水

地下水利用

ドライミスト

地下鉄構内の水源利用

地下水の利用

打ち水

地下水を利用した打ち水効果 による暑熱環境改善対策

地下鉄構内の水源、路上に打ち水

建物の冷却水

地下水を利用した建物・ 地表面の高温化抑制対策

その他

SUBWAY CANAL

地下水涵養

土壌への雨水浸透

緑陰・蔭の利用

日よけ

気球を利用した街路空間の 日よけ対策

必要な時間と場所に応じた移 動可能な日よけ

緑陰

巨樹による緑陰樹

自然樹形による 緑陰空間づくり

高木による シンボルツリー植栽

並木

街路樹デザイン

並木デザインによる緑陰

高度に都市化した街区に 効果的な高木の導入

緑化と景観デザイン

街角に緑の景観

空中・屋上空間の 緑化デザイン

市街地への緑区画の導入

グリーンカバーされた建 築物による街区デザイン

バス停デザインによる緑陰

地上部と連続した地下街への 緑陰空間の形成

屋上緑化

社会実験的手法を用いた 面的な屋上緑化の推進

社会実験的手法を用いた 連続的な屋上緑化の推進

屋上農園

エディブル・ランドスケープ (食べられる風景)による 屋上緑化

屋上に農の導入

多面的機能を発揮する発揮 する屋上緑化の推進

緑化支援グッズ

コンテナ緑化

緑化支援ユニット(電

源、水源・資器材

緑被

可動式の緑のカーペット

グリーン・カバー

風利用

ビルの形態デザイン

ビルの隙間風の利用

ビル間の通風確保

風を切るビルの形態デザイン

風通しに配慮した建物形状やセット バックによる親水空間の創出

建物形状やセットバックによる風通しに配慮した街路空間の創出

街区デザイン

都市/街路に風穴

風通しや都市の換気を意識した 街区配置やデザイン

バス停に地下鉄の冷気利用による クールスポットの創出

川風利用

川の冷涼風利用

海風涼を意識した水路デザイン

川の冷涼風を取り込む沿川の 建築デザイン

交通モードの転換

公共交通機関の有効利用

ネットワーク形成

サイクリングロード

立体街路

涼感ランニングのための 快適コースデザイン クールスポットを繋ぐ サイクリング活用

立体、都市デザイン

歩道と車道の分離

自転車走りやすい

未利用エネルギー

クールスポットの作り方 地下鉄 漏気(冷気) 河川水を冷却熱源とする、 ビル用ヒートポンプ

中之島未利用エネ活用

コージェネ

滞熱層

自然エネルギー

太陽光発電

太陽光パネルを利用した 建物の高温化抑制対策

太陽光の利用

壁面の太陽光パネル

3-3 都市デザイン、太陽光パネル

> 太陽光パネルで 景観デザイン

ICT活用

指標化・情報化

熱中症

情報通信を活用した ランニングコースの熱中症対策

府域の暑さ指数を一元管理する ことで、熱中症リスクを低減

小学校の百葉箱が拠点になる

熱中症予防情報の発信

学校設置気象センサーによる クラウドNWで、環境制御

ワイヤレスメッシュによる、 ランニング環境制御

快適性

屋外快適性(外WORK指

標)の見える化

ネットの活用による快適性を見 える化したマップの提供

クールスポットの快適度指標の発信

アプリを利用したクールスポッ トのネットワーク化

クールスポットへ繋がるSNS活用

行動誘発

クールスポットの位置・ 情報を、スマホで検察

クールスポットの快適度を、スマ ホにリアルタイムで段階表示

行動を誘発させるアプリの開 発と情報提供

優良な都市デザイン事例の 情報提供

ミスト運動を誘発させる優 良事例の情報提供

ライフスタイルの変革を 促す情報提供

> 省エネ行動を促す 情報提供

街あるきを誘発させるクール スポットの情報提供

新たな情報源

気象予報システム(セン サーウェアラブル)の活用