大阪外环状线（新大阪～都岛）鉄道建设事业の
一部変更に係る環境影响評価书

平成21年8月

大阪外環状鉄道株式会社
目次

1. 事業者の名称及び住所 ... 1
 1.1 事業者の名称等 ... 1
 1.2 主たる事務所の所在地 ... 1
2. 対象事業の名称、目的及び内容 1
 2.1 対象事業の名称 ... 1
 2.2 対象事業の目的及び内容 1
 2.2.1 対象事業の目的 ... 1
 2.2.2 事業内容の変更の概要 3
3. 環境影響評価を実施する地域及びその地域の概況 11
4. 環境影響の要因及び環境影響評価の項目並びに検討手法 12
 4.1 環境に影響を及ぼす行為・要因の抽出 12
 4.2 環境影響評価の項目 ... 12
 4.3 環境影響の範囲又は程度の検証方法の基本方針 15
5. 環境影響評価の結果 ... 17
 5.1 予測・評価の前提条件 17
 5.1.1 施設の存在・供用に関する前提条件 17
 5.1.2 建設工事中に関する前提条件 20
 5.2 地下水 ... 22
 5.2.1 現況調査 .. 22
 (1) 現況調査の概要 .. 22
 (2) 調査結果 .. 23
 5.2.2 土地の改変等に伴う地下水 25
 (1) 予測・評価の概要 25
 (2) 予測結果 .. 26
 (3) 評価 .. 29
 (4) 事業内容の変更に係る検証結果 29
 5.3 騒音 ... 30
 5.3.1 現況調査 .. 30
 (1) 現況調査の概要 .. 30
<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2)</td>
<td>調査方法</td>
</tr>
<tr>
<td>(3)</td>
<td>調査結果</td>
</tr>
<tr>
<td>5.3.2</td>
<td>列車の走行に伴う騒音</td>
</tr>
<tr>
<td>(1)</td>
<td>予測・評価の概要</td>
</tr>
<tr>
<td>(2)</td>
<td>予測方法</td>
</tr>
<tr>
<td>(3)</td>
<td>予測条件</td>
</tr>
<tr>
<td>(4)</td>
<td>予測結果</td>
</tr>
<tr>
<td>(5)</td>
<td>評価及び環境保全対策の検討</td>
</tr>
<tr>
<td>(6)</td>
<td>事業内容の変更に係る検証結果</td>
</tr>
<tr>
<td>5.3.3</td>
<td>建設機械の稼働に伴う騒音</td>
</tr>
<tr>
<td>(1)</td>
<td>予測・評価の概要</td>
</tr>
<tr>
<td>(2)</td>
<td>予測方法</td>
</tr>
<tr>
<td>(3)</td>
<td>予測条件</td>
</tr>
<tr>
<td>(4)</td>
<td>予測結果</td>
</tr>
<tr>
<td>(5)</td>
<td>評価及び環境保全対策の検討</td>
</tr>
<tr>
<td>(6)</td>
<td>事業内容の変更に係る検証結果</td>
</tr>
<tr>
<td>5.4</td>
<td>振 動</td>
</tr>
<tr>
<td>5.4.1</td>
<td>現況調査</td>
</tr>
<tr>
<td>(1)</td>
<td>現況調査の概要</td>
</tr>
<tr>
<td>(2)</td>
<td>調査方法</td>
</tr>
<tr>
<td>(3)</td>
<td>調査結果</td>
</tr>
<tr>
<td>5.4.2</td>
<td>列車の走行に伴う振動</td>
</tr>
<tr>
<td>(1)</td>
<td>予測・評価の概要</td>
</tr>
<tr>
<td>(2)</td>
<td>予測方法</td>
</tr>
<tr>
<td>(3)</td>
<td>予測条件</td>
</tr>
<tr>
<td>(4)</td>
<td>予測結果</td>
</tr>
<tr>
<td>(5)</td>
<td>評 価</td>
</tr>
<tr>
<td>(6)</td>
<td>事業内容の変更に係る検証結果</td>
</tr>
<tr>
<td>5.4.3</td>
<td>建設機械の稼働に伴う振動</td>
</tr>
<tr>
<td>(1)</td>
<td>予測・評価の概要</td>
</tr>
</tbody>
</table>
6.2.2 水質・底質
6.2.3 地下水
6.2.4 騒音
6.2.5 振動
6.2.6 地盤沈下
6.2.7 土壌汚染
6.2.8 人と自然との触れ合い活動の場
 (1) 神崎川河川敷に関する環境保全対策
 (2) 神崎川の漕艇活動に関する環境保全対策
6.2.9 文化財
6.2.10 廃棄物、発生土
6.2.11 地球環境
7. 事後調査の方針
8. 環境影響評価を委託した者の氏名及び住所
9. 関連法令・条例等による許認可等
1. 事業者の名称及び住所
1.1 事業者の名称等

名 称 : 大阪外環状鉄道株式会社
代 表 者 : 代表取締役社長 清水 幸弘

※大阪外環状鉄道株式会社は、大阪外環状線鉄道建設事業（新大阪～久宝寺）の円滑な推進を図るため、地元自治体（大阪府、大阪市、東大阪市、吹田市、八尾市）及びＪＲ西日本等の民間の出資により設立された会社である。

1.2 主たる事務所の所在地

所 在 地 : 大阪市中央区高麗橋二丁目1番10号

2. 対象事業の名称、目的及び内容
2.1 対象事業の名称

大阪外環状線（新大阪～都島）鉄道建設事業

2.2 対象事業の目的及び内容
2.2.1 対象事業の目的

大阪外環状線鉄道建設事業（新大阪～久宝寺）は、図2.2.1に示すとおり現在貨物線として使用されている城東貨物線を利用し、その旅客線化を図るものである。これにより都心に対し放射状に整備されているＪＲ、民鉄、地下鉄の各路線と大阪市外縁部において相互に連絡し、ネットワークを形成することにより、新大阪へのアクセス等都心周辺部における環状方向の流動に対応するとともに、ＪＲ関西線等の混雑緩和、都心ターミナルへの集中緩和等に資する路線である。（運輸政策審議会答申第10号 平成元年5月参照）

本事業区間（新大阪～都島）は、他区間（都島～久宝寺）と接続し一体化することにより、大阪外環状線鉄道（新大阪～久宝寺）としての当初の目的を達成するものである。なお、都島～久宝寺の区間のうち、放出～久宝寺については、平成20年3月より開業している。
図 2.2.1 大阪外環状線路線図
2.2.2 事業内容の変更の概要

大阪外環状線（新大阪〜都島）鉄道建設事業の計画の概要は、表2.2.1及び図2.2.2に示すとおりである。事業内容の変更は、表2.2.2及び図2.2.3〜2.2.5に示すとおり、吹田市域（区間延長約0.8km）における線形及び構造の変更、大阪市域（新大阪〜神崎川）における事業規模の縮小である。

吹田市域における線形の変更については、現行認可案ではJR東海道本線（京都線）の東側を並行する線路条件であったが、変更案では梅田貨物線を走行の上分岐し、跨線線路橋によりJR東海道本線（京都線）を乗越して西吹田駅（仮称）に至る計画とした。吹田市域における構造の変更については、現行認可案における盛土構造を、変更案では高架構造とした。大阪市域（新大阪〜神崎川）における事業規模の縮小については、現行認可案ではJR東海道本線（京都線）の東側を並行する線形条件であったが、変更案では梅田貨物線を走行することにより、事業計画路線新設の工事を実施しない計画とした。

事業内容の変更理由について、吹田市域における構造の変更は、「大阪外環状線（新大阪〜都島）鉄道建設事業に係る環境影響評価書」（平成14年11月、大阪外環状鉄道株式会社）（以下「環境影響評価書（平成14年11月）」という。）に示す知事意見及び吹田市並びに南吹田まちづくり会議の要望を踏まえ、地域分断の回避、高架下空間の活用、景観上の配慮等を目的とし、高架構造とした。一方、大阪市域（新大阪〜神崎川）における事業規模の縮小は、関係機関との協議を踏まえ、東淀川駅付近に設置されている既設踏切の拡幅を回避することを目的とし、事業計画路線を新設しない計画とした。また、これに伴い、吹田市域における線形の変更を行った。

変更案における工事工程は、表2.2.3に示すとおりであり、12ヶ年（平成19〜30年度）を要する計画となっている。JR東海道本線乗越部が営業線近接工事になること等により、工事工程は現行認可案に比べて、7ヶ年長くなっている。なお、工事数量は、現行認可案と同程度である。
表2.2.1 計画の概要

<table>
<thead>
<tr>
<th>項目</th>
<th>概要</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業区間</td>
<td>新大阪～都島</td>
<td>変更なし</td>
</tr>
<tr>
<td>工事区間</td>
<td>起点:吹田市南吹田四丁目3番
終点:大阪市都島区大東町一丁目14番
延長:約4.0km（大阪市域約3.0km、吹田市域約1.0km）</td>
<td>大阪市域（新大阪～神崎川）は、事業規模縮小</td>
</tr>
<tr>
<td>駅計画</td>
<td>西吹田駅（仮称）、淡路駅（仮称）</td>
<td>変更なし</td>
</tr>
<tr>
<td>構造形式</td>
<td>複線
① 地平構造 約0.1km（約0.7km）
② 盛土構造（擁壁を含む） 約1.7km（約2.6km）
③ 高架・橋梁構造 約2.2km（約2.1km）</td>
<td>大阪市域（新大阪～神崎川）は、事業規模縮小
吹田市域は、盛土構造（擁壁を含む）区間の一部が、高架・橋梁構造に変更</td>
</tr>
<tr>
<td>集電方式</td>
<td>架空線方式</td>
<td>変更なし</td>
</tr>
<tr>
<td>電気方式</td>
<td>直流1,500V</td>
<td>変更なし</td>
</tr>
<tr>
<td>軌間</td>
<td>1,067mm</td>
<td>変更なし</td>
</tr>
<tr>
<td>施工期間</td>
<td>約12ヶ年の予定（表2.2.3参照）</td>
<td>期間変更</td>
</tr>
<tr>
<td>新設・改良の別</td>
<td>新設及び改良を行う。</td>
<td>変更なし</td>
</tr>
<tr>
<td>建設実施区間</td>
<td>大阪市（東淀川区、旭区、都島区）、吹田市</td>
<td>大阪市域（新大阪～神崎川）は、事業規模縮小</td>
</tr>
<tr>
<td>現行貨物の運行形態</td>
<td>ディーゼル車の牽引による貨物列車の運行となっている。</td>
<td>変更なし</td>
</tr>
<tr>
<td>輸送需要及び運行計画</td>
<td>利用者数:約6万人／日（見込み）
運行本数:旅客輸送=往復142本／日
貨物輸送=往復20本／日</td>
<td>変更なし</td>
</tr>
</tbody>
</table>

(注) ()内は、現行認可案における延長を示す。

表2.2.2 事業内容の変更の概要

<table>
<thead>
<tr>
<th>区間</th>
<th>変更内容</th>
<th>現行認可案</th>
<th>変更概要</th>
<th>変更案</th>
</tr>
</thead>
<tbody>
<tr>
<td>大阪市域（新大阪～神崎川）</td>
<td>事業規模縮小
JＲ東海道本線（京都線）の東側を並行
構造変更:盛土構造
高架構造</td>
<td>梅田貨物線を走行することにより、事業計画路線を新設せず
梅田貨物線を走行の上分岐し、跨線橋によりＪＲ東海道本線（京都線）を乗越</td>
<td></td>
<td></td>
</tr>
<tr>
<td>吹田市域</td>
<td>線形変更
JＲ東海道本線（京都線）の東側を並行
構造変更:盛土構造
高架構造</td>
<td>梅田貨物線を走行の上分岐し、跨線橋によりＪＲ東海道本線（京都線）を乗越</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

表2.2.3 大阪外環状線の工事工程

<table>
<thead>
<tr>
<th>項目</th>
<th>年度</th>
<th>平成19年度</th>
<th>平成20年度</th>
<th>平成21年度</th>
<th>平成22年度</th>
<th>平成23年度</th>
<th>平成24年度</th>
<th>平成25年度</th>
<th>平成26年度</th>
<th>平成27年度</th>
<th>平成28年度</th>
<th>平成29年度</th>
<th>平成30年度</th>
</tr>
</thead>
<tbody>
<tr>
<td>測量調査・用地</td>
<td></td>
</tr>
<tr>
<td>営業線改良工事</td>
<td></td>
</tr>
<tr>
<td>土木工事</td>
<td></td>
</tr>
<tr>
<td>軌道・電気工事</td>
<td></td>
</tr>
<tr>
<td>駅舎等</td>
<td></td>
</tr>
</tbody>
</table>
図 2.2.2 標準横断図
図 2.2.3 大阪外環状線（新大阪～西吹田）の配線変更案の概要

（注）②－②断面、⑨－⑨断面、⑩－⑩断面は、図 2.2.5 に示す横断面図の位置を示している。
図2.2.4 現行認可案と変更案の高架区間の詳細な位置（吹田市域）
図2.2.5(1) 現行認可案と変更案の横断面図（№②地点）
図2.2.5(2) 現行認可案と変更案の横断面図（№⑨地点）
図2.2.5(3) 現行認可案と変更案の横断面図（№⑩地点）
3. 環境影響評価を実施する地域及びその地域の概況

事業内容の変更に伴い環境影響評価を実施する地域は、図 3.1.1 に示すとおりである。事業内容の変更は、吹田市域における線形及び構造の変更、大阪市域（新大阪～神崎川）における事業規模の縮小であることから、環境影響評価を実施する地域は、吹田市域とした。なお、大阪市域（新大阪～神崎川）については、事業規模の縮小であり、事業計画路線新設の工事を実施しないことから、環境影響評価の対象外とした。環境影響評価を実施する地域の概況は、環境影響評価書（平成 14 年 11 月）に示す状況と同様である。
4. 環境影響の要因及び環境影響評価の項目並びに検討手法

4.1 環境に影響を及ぼす行為・要因の抽出

本事業の実施に伴い事業の実施予定区域及びその周辺地域の環境に影響を及ぼすおそれがある行為・要因（以下「環境影響の要因」という。）について、事業特性及び地域特性を考慮し、抽出した結果は表 4.1.1 に示すとおりである。

なお、対象事業の一部変更に係る検討において、抽出すべき環境影響の要因は、環境影響評価書（平成14年11月）において抽出した6つの要因を基本とした。

表 4.1.1 環境影響の要因の抽出結果

<table>
<thead>
<tr>
<th>環境影響の要因</th>
<th>想定される環境影響の内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設の存在</td>
<td>高架等の存在により、日照阻害、電波障害の発生が考えられる。</td>
</tr>
<tr>
<td>施設の存在</td>
<td>高架等の存在により、都市景観の変化が考えられる。</td>
</tr>
<tr>
<td>列車の走行</td>
<td>列車の走行に伴い、騒音、振動、低周波音が発生する。</td>
</tr>
<tr>
<td>施設の利用</td>
<td>駅施設の利用に伴い、廃棄物が発生する。</td>
</tr>
<tr>
<td>車両の運行</td>
<td>建設機械の稼働に伴い、大気汚染物質が排出される。</td>
</tr>
<tr>
<td>建設機械の稼働</td>
<td>建設機械の稼働に伴い、騒音、振動が発生する。</td>
</tr>
<tr>
<td>工事用運搬車両の運行</td>
<td>工事用運搬車両の運行に伴い、大気汚染物質が排出される。</td>
</tr>
<tr>
<td>工事用運搬車両の運行</td>
<td>工事用運搬車両の運行に伴い、騒音、振動が発生する。</td>
</tr>
<tr>
<td>土地の改変等</td>
<td>橋脚の建設工事に伴い、河川の濁りの発生が考えられる。</td>
</tr>
<tr>
<td>土地の改変等</td>
<td>土地の改変に伴い、地下水、土壤への影響が考えられる。</td>
</tr>
<tr>
<td>土地の改変等</td>
<td>土地の改変に伴い、埋蔵文化財への影響が考えられる。</td>
</tr>
<tr>
<td>土地の改変等</td>
<td>土地の改変に伴い、土砂が発生する。</td>
</tr>
</tbody>
</table>

4.2 環境影響評価の項目

環境影響の要因及び事業内容の変更等の条件を勘案し、環境影響評価の項目を抽出した。環境影響の要因と環境影響評価の項目の関係は、表4.2.1に示すとおりである。

なお、検討の对象とする環境要素は、地下水、騒音、振動、低周波音、土壤汚染、日照阻害、電波障害、景観の8区分である。
表 4.2.1(1) 環境影響の要因と環境影響評価の項目の関係

<table>
<thead>
<tr>
<th>環境項目</th>
<th>細項目</th>
<th>環境影響要因の内容</th>
<th>施設の存在</th>
<th>施設の供用</th>
<th>建設機械の稼働</th>
<th>駅施設の利用</th>
<th>列車の走行</th>
<th>工事の実施</th>
<th>運搬車両</th>
<th>土地の変更等</th>
<th>判 断 理 由</th>
</tr>
</thead>
<tbody>
<tr>
<td>大気質</td>
<td>二酸化窒素</td>
<td>○ ○</td>
<td>建設機械の稼働については、建設機械別の大気汚染物質排出量が予測事項であるが、主な使用建設機械の変更がないことから、検証項目として対象としない。工事用運搬車両の運行については、工事用運搬車両の運行に伴う大気汚染物質の排出量が予測事項であるが、運行台数の変化がないことから、検証項目としては対象としない。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>浮遊粒子状物質</td>
<td>○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>二酸化硫黄</td>
<td>○ ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>水質・底質</td>
<td>浮遊物質量</td>
<td>○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>地下水</td>
<td>トリクロロエチレン、テトラクロロエチレン、シス–1,2–ジクロロエチレン等</td>
<td>●</td>
<td>本事業計画路線の周辺（南吹田）で地下水汚染が認められており、さらに、当該地域における工事内容の変更があることから、検証項目として設定する。</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>低周波音の音圧レベルの最大値</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>振動レベルの最大値</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>振動レベルの80%レンジ上限値等</td>
<td>● ○</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>低周波音の音圧レベルの最大値</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>恶臭</td>
<td>－</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>地盤沈下</td>
<td>－</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>土壤汚染</td>
<td>トリクロロエチレン、テトラクロロエチレン、シス–1,2–ジクロロエチレン等</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>日照阻害</td>
<td>日照阻害</td>
<td>●</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）1. ●印は環境影響評価項目のうち本検討において環境影響の範囲又は程度の検証を行う項目、○印は環境影響評価項目のうち環境影響の範囲又は程度に変化のない項目である。
2. 判断理由において、「－」を示している項目は、環境影響評価書（平成14年11月）に示す内容と同様の理由により、環境影響の範囲又は程度の検証を行わないことを示している。
表 4.2.1(2) 環境影響の要因と環境影響評価の項目の関係

<table>
<thead>
<tr>
<th>環境項目</th>
<th>細項目</th>
<th>環境影響要因の内容</th>
<th>判断理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設の存在</td>
<td>駅施設の利用</td>
<td>電波障害</td>
<td>テレビ電波障害 ●</td>
</tr>
<tr>
<td>施設の供用</td>
<td>駅施設の利用</td>
<td>気象</td>
<td>-</td>
</tr>
<tr>
<td>工事の実施</td>
<td>工事用運搬車両の運行</td>
<td>地象</td>
<td>-</td>
</tr>
<tr>
<td>土地の改変等</td>
<td>土地の改変等</td>
<td>水象</td>
<td>-</td>
</tr>
<tr>
<td>陸域生態系</td>
<td>陸域生態系</td>
<td>陸生動物</td>
<td>-</td>
</tr>
<tr>
<td>海域生態系</td>
<td>海域生態系</td>
<td>淡水生物</td>
<td>-</td>
</tr>
<tr>
<td>人と自然との触れ合い活動の場</td>
<td>人と自然との触れ合い活動の場</td>
<td>人と自然との触れ合い活動の場</td>
<td>-</td>
</tr>
<tr>
<td>景観</td>
<td>景観</td>
<td>都市景観 ●</td>
<td>都市景観盛土構造から高架構造への変更等があることから、検証項目として設定する。</td>
</tr>
<tr>
<td>文化財</td>
<td>文化財</td>
<td>埋蔵文化財 ○</td>
<td>事業内容の変更等を実施する区域においては、指定文化財及び周知の埋蔵文化財包蔵地がないことから、検証項目として対象としない。</td>
</tr>
<tr>
<td>廃棄物</td>
<td>廃棄物</td>
<td>廃棄物 ○</td>
<td>駅施設の利用については、1日平均乗車人員等の条件の変更はないことから、検証項目として対象としない。土地の改変等については、構造条件の変更があるが、工事を実施する区間が短縮しており、基礎工事等の削除や盛土の撤去に伴う土砂、コンクリート溜出物の撤去に伴うコンクリートがら等が大幅に増大することはないことから、検証項目として対象としない。本事業では、建設発生土は盛土造成等に流用し、事業内容の変更に当たっては、建設発生土の流用先である盛土区間が減少することとなるが、盛土築造に用いる土量は削除及び撤去盛土のうち新盛土への転用を図る量を上回っているから、建設発生土の最終処分量が増加することはない。</td>
</tr>
<tr>
<td>発生土</td>
<td>発生土</td>
<td>発生土 ○</td>
<td>事業内容の変更等を実施する区域においては、指定文化財及び周知の埋蔵文化財包蔵地がないことから、検証項目として対象としない。</td>
</tr>
<tr>
<td>地球環境</td>
<td>地球環境</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

（注）1. ●印は環境影響評価項目のうち本検討において環境影響の範囲又は程度の検証を行う項目、○印は環境影響評価項目のうち環境影響の範囲又は程度に変化のない項目である。
2. 判断理由において、「-」を示している項目は、環境影響評価書（平成14年11月）に示す内容と同様の理由により、環境影響の範囲又は程度の検証を行わないことを示している。
4.3 環境影響の範囲又は程度の検証方法の基本方針

事業内容の変更に伴う環境影響の範囲又は程度の検証方法について、基本方針は表 4.3.1 に示すとおりである。

<table>
<thead>
<tr>
<th>環境項目</th>
<th>環境影響要因</th>
<th>検証に関する基本的な考え方</th>
</tr>
</thead>
</table>
| 地 下 水 | 土地の改変等 | • 予測・評価は、環境影響評価書（平成14年11月）と同様、施工方法に基づいて定性的なとりまとめとする。
 • 地下水質は、吹田市が定期的に現地調査を行っていることから、現況把握のため、それらの調査結果も併せて整理する。
 • 評価は、環境影響評価書（平成14年11月）と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと、③水質汚濁防止法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するものであることとの対比を行う。 |
| 列車の走行 | | • 環境影響評価書（平成14年11月）と同様の予測手法で再予測を行う。
 • 予測地点は、№②地点及び跨線線路橋の代表地点とする。
 • 評価は、環境影響評価と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこととの対比を行う。 |
| 騒 音 | | • 予測・評価は、建設機械の稼働位置の変更条件を踏まえ、環境影響の範囲又は程度について考察を行う。
 • 評価は、環境影響評価と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②騒音規制法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するものであることとの対比を行う。 |
| 建設機械の稼働 | | • 環境影響評価書（平成14年11月）と同様の予測手法で再予測を行う。
 • 予測地点は、№②地点及び跨線線路橋の代表地点とする。
 • 評価は、環境影響評価と同様、環境への影響を最小限にとどめるよう環境保全について配慮されていることとの対比を行う。
 • 跨線線路橋の代表地点付近において、環境影響の現況把握のため、現地調査を行う。 |
| 振 動 | | • 予測・評価は、建設機械の稼働位置の変更条件を踏まえ、環境影響の範囲又は程度について考察を行う。
 • 評価は、環境影響評価と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②振動規制法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するものであることとの対比を行う。 |
<table>
<thead>
<tr>
<th>環境項目</th>
<th>環境影響要因</th>
<th>検証に関する基本的な考え方</th>
</tr>
</thead>
</table>
| 低周波音 | 列車の走行 | - 環境影響評価書（平成14年11月）では、盛土区間又は地平区間を対象として予測を行っている。
- 当該区分は、盛土構造が高架橋または跨線路橋に変更となることから、類似箇所における現地調査結果からの推計を行うこととする。
- 評価は、環境影響評価書（平成14年11月）と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこととの対比を行う。 |
| 土壌汚染 | 土地の改変等 | - 予測・評価は、環境影響評価書（平成14年11月）と同様、施工方法に基づいて定性的なとりまとめとする。
- 評価は、環境影響評価書（平成14年11月）と同様、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと、③土壌汚染対策法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するとともに、農用地の土壌の汚染防止等に関する法律に定める基準に該当しないものであることとの対比を行う。 |
| 日照阻害 | 施設の存在 | - 環境影響評価書（平成14年11月）と同様の予測手法で再予測を行う。
- 予測地点は、環境影響の範囲又は程度の変化が想定される地点を設定することとし、鉄道騒音・振動の予測地点と同一断面を対象とする。
- 評価は、環境影響評価書（平成14年11月）と同様、環境への影響を最小限にとどめるよう環境保全について配慮されていることとの対比を行う。 |
| 電波障害 | 施設の存在 | - 環境影響評価書（平成14年11月）と同様の予測手法で再予測を行う。
- 予測地点は、No.2地点を基本とするが、変更案の構造・軌道条件を勘案して、環境影響の範囲又は程度の変化が想定される地点を設定することとする。
- 評価は、環境影響評価書（平成14年11月）と同様、環境への影響を最小限にとどめるよう環境保全について配慮されていることとの対比を行う。 |
| 景観 | 施設の存在 | - 環境影響評価書（平成14年11月）と同様の予測手法で再予測を行う。
- 予測対象とする視点は、構造変更がある地点とする。
- 評価は、環境影響評価書（平成14年11月）と同様、①景観形成について十分な配慮がなされていること、②環境基本計画、大阪府環境総合計画、自然環境の保全と回復に関する基本方針等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこととの対比を行う。 |
5. 環境影響評価の結果

図 図 予測・評価の前提条件

図 図 施設の存在・供用に関する前提条件

施設の存在・供用に関する予測・評価の検証項目は、列車の走行に伴う騒音・振動・低周波音、施設の存在に伴う日照阻害、電波障害及び景観の6項目である。

列車の走行に伴う騒音・振動及び施設の存在に伴う日照阻害については、環境影響の範囲又は程度の変化が想定される地点を対象として、環境影響評価書（平成 年 月）と同様の手法により検証を行うこととした。具体的には、図 図及図 図示すとおり、鉄道騒音・振動及び日照阻害の予測地点は、 、 、及び 地点を設定した。なお、地点は、環境影響評価書（平成 年 月）における鉄道騒音・振動の予測地点であり、 地点は、中線線路橋の代表断面として新たに設置した地点である。

列車の走行に伴う低周波音については、環境影響評価書（平成 年 月）と同様の考え方とし、類似区間での現地調査結果に基づいて想定する方法とした。

施設の存在に伴う電波障害及び景観については、環境影響の範囲又は程度の変化が想定される地点を対象とし、代表断面を選定した上で予測を行うこととした。

表 表 鉄道騒音・振動及び日照阻害の予測地点の概要

<table>
<thead>
<tr>
<th>地点</th>
<th>住所</th>
<th>地点概要</th>
<th>予測・評価の対象</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>低層住宅等が集積して立地</td>
<td>騒音 振動 日照阻害</td>
</tr>
<tr>
<td></td>
<td>吹田市南吹田一丁目</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>吹田市南吹田四丁目</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>吹田市南吹田二丁目</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
図5.1.1 鉄道騒音・振動及び日照障害の予測地点
【□□地点】

【□□地点】

図 ernal 種類・振動及び日照阻害の予測断面（□□及び□□地点）
建設工事中に関する前提条件

建設工事中に関する予測・評価の検証項目は、土地の改変等に伴う地下水・土壌汚染、建設機械の稼働に伴う騒音・振動の4項目である。

建設工事中に関する予測・評価の考え方は、環境影響評価書（平成10年10月）と同様、騒音・振動等の環境に及ぼす影響が大きいと考えられる路盤の築造等の土木工事を対象とすることとした。なお、工区割り及び主な使用建設機械等の施工内容については、基本的に変更はないことから、予測に当たっては、環境影響評価書（平成10年10月）で想定した前提条件に基づくこととした。
工事施工順序の概略及び主な使用建設機械は、表1に示すとおりである。
<table>
<thead>
<tr>
<th>工事作業</th>
<th>工事のイメージ</th>
<th>作業内容</th>
<th>主要な建設機械</th>
</tr>
</thead>
<tbody>
<tr>
<td>□ 地盤改良工</td>
<td></td>
<td>セメント系固化体による地盤改良を行った後、トレーラーにより矢板を搬入し、その矢板を油圧式杭圧入引抜機により打ち込みを行う。</td>
<td>油圧式杭圧入引抜機 トラッククレーン</td>
</tr>
<tr>
<td>□ 杭基礎工</td>
<td></td>
<td>オールケーシング掘削機により地盤を掘削後、鉄筋を組立て、コンクリートポンプ車によりコンクリートを打設して場所打杭を順次完成させる。</td>
<td>トラッククレーン コンクリートミキサ車 コンクリートポンプ車 オールケーシング掘削機</td>
</tr>
<tr>
<td>□ 掘削工</td>
<td></td>
<td>土留及び杭基礎完了後にパックホウで掘削し、ダンプトラックに積み込んで搬出する。</td>
<td>パックホウ ダンプトラック</td>
</tr>
<tr>
<td>□ 駆体工</td>
<td></td>
<td>掘削完了後に下部のフーチングを仕上げて下部から順次鉄筋組立、型枠組、コンクリート打設、型枠撤去を繰り返し、架橋を築造する。</td>
<td>トラッククレーン コンクリートミキサ車 コンクリートポンプ車</td>
</tr>
<tr>
<td>□ 梁架設工</td>
<td></td>
<td>ラーメン高架構部分は、鉄筋組立、型枠組、コンクリート打設、型枠撤去を繰り返し順次完成させる。ラーメン高架構相方のつなぎ部分は、現場で築造する。</td>
<td>トラッククレーン コンクリートミキサ車 コンクリートポンプ車</td>
</tr>
<tr>
<td>□ 軌道路工</td>
<td></td>
<td>高架橋完成後、工場製作した軌道を現場に搬入し、門型の自走クレーンで敷設することにより順次軌道を完成させる。</td>
<td>門型クレーン</td>
</tr>
</tbody>
</table>
5.2 地下水

5.2.1 現況調査

(1) 現況調査の概要

事業計画路線の周辺地域における地下水の現況については、環境影響評価書（平成14年11月）において、平成11年6月～平成12年11月に地下水質調査を実施しており、一部の物質が環境基準値を上回っているとの結果を得ている。これらの状況を受けて、吹田市では地下水質調査を継続実施していることから、本書においてその結果を掲載する。

吹田市による地下水質調査の概要は、表5.2.1に示すとおりである。

<table>
<thead>
<tr>
<th>調査項目</th>
<th>地下水質</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査事項</td>
<td>1,1-ジクロロエチレン、シス-1,2-ジクロロエチレン、1,1,1-トリクロロエタン、トリクロロエチレン、テトラクロロエチレン</td>
</tr>
<tr>
<td>調査地域</td>
<td>事業計画路線の吹田市域（図5.2.1参照）</td>
</tr>
<tr>
<td>調査地点</td>
<td>第1帯水層の4地点</td>
</tr>
<tr>
<td>調査期間</td>
<td>平成16年5月〜平成19年12月</td>
</tr>
<tr>
<td>調査方法</td>
<td>「土壌・地下水汚染に係る調査・対策指針運用基準」（平成11年1月、環境庁水質保全局）に示されているヘッドスペース法</td>
</tr>
</tbody>
</table>
(2) 調査結果

吹田市による地下水質調査の結果は、表 5.2.2 に示すとおりであり、1,1-ジクロロエチレン及びシス-1,2-ジクロロエチレンが環境基準値を上回っている。

表 5.2.2 吹田市による地下水質調査の結果

<table>
<thead>
<tr>
<th>項目</th>
<th>A2</th>
<th>A3</th>
<th>A5</th>
<th>A6</th>
<th>測定日</th>
</tr>
</thead>
<tbody>
<tr>
<td>トリクロロエチレン</td>
<td><0.002</td>
<td><0.002</td>
<td><0.002</td>
<td><0.002</td>
<td>平成 16 年 5月 24日</td>
</tr>
<tr>
<td>テトラクロロエチレン</td>
<td><0.0005</td>
<td>0.0088</td>
<td><0.0005</td>
<td><0.0005</td>
<td>平成 16 年 8月 23日</td>
</tr>
<tr>
<td>1,1,1-トリクロロエタン</td>
<td><0.0005</td>
<td>0.059</td>
<td><0.0005</td>
<td><0.0005</td>
<td>平成 16 年 11月 24日</td>
</tr>
<tr>
<td>シス-1,2-ジクロロエチレン</td>
<td>0.15</td>
<td><0.002</td>
<td>0.1</td>
<td><0.002</td>
<td>平成 17 年 2月 21日</td>
</tr>
<tr>
<td>1,1-ジクロロエチレン</td>
<td>0.022</td>
<td><0.002</td>
<td>0.033</td>
<td><0.002</td>
<td>平成 17 年 12月 7日</td>
</tr>
<tr>
<td>测定点</td>
<td>平成 18 年 12月 14日</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(単位：mg/L)

| 浴水質環境基準 | 0.3 | 0.01 | 1 | 0.04 | 0.02 | － |

(注) 吹田市による調査結果（吹田市環境部資料）を示す。
<table>
<thead>
<tr>
<th>例</th>
<th>事業計画路線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>調査地点</td>
</tr>
</tbody>
</table>

図5.2.1 地下水質調査の調査地点
5.2.2 土地の改変等に伴う地下水

(1) 予測・評価の概要

土地の改変等に伴う地下水の影響の予測・評価は、環境影響評価書（平成14年11月）と同様の手法で行うこととし、予測の概要は表5.2.3、評価の概要は表5.2.4に示すとおりである。

| 影響要因 | 予測の概要 |
|---------------------------------|
| 予測項目 | 地下水 |
| 予測事項 | 建設工事の実施が地下水に及ぼす影響 |
| 予測地点 | 吹田市域の高架構造物の基礎杭建設予定地 |
| 予測時期 | 吹田市域の高架構造物の基礎杭建設の工事中 |
| 予測方法 | 環境影響評価書（平成14年11月）で適用した地下水・土壌汚染拡散防止対策工法及び工事中の湧水の処理方法の検討による推定 |

表 5.2.3 地下水に関する予測の概要

| 予測項目 | 評価の手法 | 概要 |
|---------------------------------|
| ①環境への影響を最小限にとどめるよう環境保全について配慮されていること。 | 周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。 |
| ②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと。 | 地下水汚染が事業計画路線の周辺地域に拡散しないこととする。 |
| ③水質汚濁防止法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するものであること。 | 地下水汚濁が事業計画路線の周辺地域に拡散しないこととする。 |
| ④事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。 | 地下水・土壌汚染拡散防止対策工法について、現行認可案と変更案との比較・検証を行う。 |

表 5.2.4 地下水に関する評価の概要
(2) 予測結果

(a) 地下水・土壌汚染拡散防止対策工法の検討

吹田市域の高架構造の基礎杭の工法は、以下に示す事項に配慮して検討した。

- 第1帯水層の汚染物質を第2帯水層に流入させない。
- 地下水流動を妨げない。

吹田市域の高架構造物の基礎杭の工法の検討結果は、表5.2.5に示すとおりである。

工法は、①さや管工法案（さや管理殺しの場合、さや管引抜きの場合）、②地盤改良工法案（セメント系固化体）（ケーシング埋殺しの場合、ケーシング引抜きの場合）について検討した結果、②地盤改良工法案（セメント系固化体）でケーシング埋殺しの場合が最も地下水・土壌汚染の拡散防止に有効であり、これを採用することとする。

(b) 湧水の処理方法

地盤の掘削時に湧水が発生したときには水質調査を行い、汚染が確認された場合には、処理業者に委託し、熱処理分解等により適切に処理することとする。

(c) 予測の結果

高架構造物の基礎杭の工事には、適切な地下水汚染拡散防止対策工法を採用することから、第1帯水層の地下水汚染が第2帯水層へ拡散することはないものと考える。

地盤の掘削時に湧水が発生した場合には、適切な処理を行うことから、地下水汚染が周辺に拡散することはないものと考える。

また、高架構造物の基礎杭が地下水流動に及ぼす影響については、基礎杭の施工部分に地下水の遮断が生じると考えられるものの、第1帯水層の地下水は基礎杭を回り込んで流れるため、流動を大きく妨げるものではないと考える。
表 5.2.5(1) 地下水・土壌汚染拡散防止対策工法（基礎杭施工）の比較検討結果

<table>
<thead>
<tr>
<th></th>
<th>① さや管工法案</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>さや管理殺しの場合</td>
</tr>
</tbody>
</table>

地下水・土壌汚染対策工法概念図

<table>
<thead>
<tr>
<th>地下水・土壌汚染対策工法の概念</th>
<th>汚染層（第1帯水層）にさや管（鋼管）を中掘圧入して粘性土で定着し、さや管内を洗浄後基礎杭を打設する工法。なお、さや管の定着部はシール材を注入し遮水体を設け、汚染拡散防止を図る。</th>
</tr>
</thead>
<tbody>
<tr>
<td>施工概要</td>
<td>① 所定の基礎杭位置において、中掘圧入施工によりさや管を粘性土中に定着させる。 ② さや管設置後、さや管定着部にシール材（暖結性懸濁型グラウト）を注入する。 ③ シール材注入後、さや管の内部を洗浄する。 ④ さや管内で場所打ち杭を施工し、さや管は埋殺す。 ④ さや管を引抜きながら場所打ち杭を施工する。</td>
</tr>
<tr>
<td>場所打ち杭の適用施工法</td>
<td>オールケーシング工法・アースドリル工法・リバース工法</td>
</tr>
<tr>
<td>汚染拡散防止の確実性</td>
<td>さや管の内部を洗浄することにより、地下水が流入するかどうかを確認できる。 さや管管理殺しのため、汚染拡散防止の確実性は高い。 さや管引抜き後、地下水が抗体を伝わり汚染拡散の恐れがある。</td>
</tr>
<tr>
<td>施工性</td>
<td>工種が多く、やや工期が長い。 さや管管理殺しのため、施工性は良い。 さや管引抜きと場所打ち杭のコンクリート打設を併用することになるため施工性が劣る。</td>
</tr>
<tr>
<td>施工に伴う環境対策</td>
<td>さや管内における汚染廃土、地下水及びさや管内の洗浄水（約8t程度／本）の処理対策が必要である。</td>
</tr>
<tr>
<td>評価</td>
<td>△</td>
</tr>
</tbody>
</table>

図：断面図，平面図
表 5.2.5(2) 地下水・土壌汚染拡散防止対策工法（基礎杭施工）の比較検討結果

<table>
<thead>
<tr>
<th></th>
<th>地盤改良工法（セメント系固化体）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ケーシング埋殺しの場合</td>
</tr>
</tbody>
</table>

地下水・土壌汚染対策工法概念図

地下水・土壌汚染対策工法の概念

所定の基礎杭位置の周辺に、深層混合処理工法によりセメント系固化体を生成し、固化体内に基礎杭を打設する工法。

施工概要

① 全周回転オールケーシング工法により、掘削する。
② ケーシングはそのまま場所打ち杭を施工する。
③ ケーシングを引抜きながら場所打ち杭を施工する。

場所打ち杭の適用施工法

全周回転オールケーシング工法

施工性

① 汚染層（第1帯水層）から粘性土中まで、深層混合処理工法によりセメント系固化体を生成することができる。
② ケーシング埋殺しのため、污染拡散防止の確実性が高い。
③ ケーシング引抜き時に粘性土盤を乱す恐れがある。

施工に伴う環境対策

① 全周回転オールケーシング工法により、汚染拡散防止の確実性が高い。
② ケーシングは転用材を使用するため、ケーシングの加工は要である。

評価

○ △
(3) 評価

土地の改変等に伴う地下水の評価は、①環境への影響を最小限にとどめるような環境保全について配慮されていること、②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと、③水質汚濁防止法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するものであることに基づいて行うこととした。具体的には、地下水汚染が事業計画路線の周辺地域に拡散しないこととした。

吹田市域における高架構造物の基礎杭の工事には、適切な地下水・土壌汚染拡散防止対策工法を採用することから、第1帯水層の地下水汚染が第2帯水層へ拡散することはないものと考える。また、地下水は、基礎杭を回り込んで流れるため、流動は大きく妨げられないものと考える。

地盤の掘削時に湧水が発生したときは水質調査を行い、汚染が確認された場合には処理業者に委託し、適切に処理を行うことから、地下水汚染が事業計画路線の周辺地域に拡散することはないものと考える。

また、地下水汚染が確認されている地域での工事の実施に当たっては、環境への影響を最小限にとどめるため、以下のようす環境保全対策を講じることとする。

① 駅舎及び高架部の基礎杭の工事においては、地盤改良工法（セメント系固化体、ケーシング埋殺し）を採用することにより地下水汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。

② 地盤の掘削時に湧水が発生したときは水質調査を行い、汚染が確認された場合には処理業者に委託し、適切に処理を行うことから、地下水汚染が事業計画路線の周辺地域に拡散することはないものと考える。

③ 第2帯水層への汚染の拡大が確認された場合の対応方法について、当該区間の施工着手までに吹田市と事前協議を行う。また、迅速な対応を図るための緊急連絡体制を確立する。

④ 工事による地下水汚染拡散がないことを確認するため、最初に打設する杭を対象としてモニタリングを行う。

以上より、土地の改変等は周辺地下水に著しい影響を及ぼさないものと考えられる。

(4) 事業内容の変更に係る検証結果

環境影響評価書（平成14年11月）においては、地下水・土壌汚染拡散防止対策工法の採用等により土地の改変等は周辺地下水に著しい影響を及ぼさないものとしているが、事業内容の変更後にについても同様の考え方となっている。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
騒音

現況調査

現況調査の概要

調査対象地域における鉄道騒音の現況については、環境影響評価書（平成 年 月）では東海道本線の東側地域で現地調査を実施しているが、西側地域では実施していない。そのため、本調査では、調査対象地域の西側地域の鉄道騒音の現況を把握するため現地調査を実施した。

鉄道騒音の現況調査の概要は、表 に示すとおりである。

表 鉄道騒音の現況調査の概要

<table>
<thead>
<tr>
<th>調査項目</th>
<th>鉄道騒音</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査事項</td>
<td>等価騒音レベル（Laeq）</td>
</tr>
<tr>
<td>調査地域</td>
<td>事業計画路線の沿線地域</td>
</tr>
<tr>
<td>調査地点</td>
<td>□ □地点（図 参照）</td>
</tr>
<tr>
<td>調査日時</td>
<td>平成 年 月 日（金） 0時〜 時</td>
</tr>
<tr>
<td>調査方法</td>
<td>「在来鉄道の新設又は大規模改良に際しての騒音対策の指針について」（平成 年 月 日環境庁大気保全局長通知）による測定方法</td>
</tr>
</tbody>
</table>

調査方法

測定方法

騒音の測定は、「在来鉄道の新設又は大規模改良に際しての騒音対策の指針について」（平成 年 月 日 環境庁大気保全局長通知）で示されている方法に準拠して行った。具体的な測定方法は以下のとおりとした。

測定計器の組合せは、以下に示すとおりであり、日本工業規格に適合した積分型普通騒音計、レベルレコーダ及びデジタルオーディオテープレコーダの組合せで行った。

マイクロホンは、道路端の地上 m 高さに設置した。
騒音計については、周波数補正回路はA特性、動特性は「緩」（LAeq）とした。レベルレコーザについては、動特性は騒音計に準じて「緩」（LAeq）、フルレンジ幅は60デシベル、紙送り速度は1mm/sとした。

測定は、等価騒音レベル（LAEQ）を対象とし、併せて通過列車ごとの騒音レベルのピーク値（LAMAX）と走行速度の測定を行った。走行速度は、調査地点付近の1地点を列車全体が通過する時間をストップウォッチにより測定し、列車長と通過時間に基づいて算定した。

測定時には、運行列車の走行方向、走行速度（通過時間）、列車種別の確認を行った。

測定時間は、0時から23時までとし、60秒間隔で個々の時間連続の瞬時騒音計本体にメモリーした。

本測定は、測定員が常時監視することにより行うが、除外すべき音の処理として現場では騒音計をポーズして除外せず、レベルレコーザに除外音を記入した。騒音計は、10時間連続の瞬時騒音をメモリーし、室内で記録紙を確認しながら除外音を除去する方法で行った。

データ整理方法

騒音計の内部メモリーに保存している60秒間隔瞬時音データを用いて、騒音レベルの変動波形を再現すると同時にレベルレコーザの記録波形と一致していることを確認した。

レベルレコーザによるモニタリング結果に基づいて、60秒間隔瞬時音データから自動車走行音等の除外音を除外して有効なデータを整理した。

等価騒音レベル（LAEQ）については、60秒間隔瞬時音の有効なデータに基づいて整理した。

調査結果

鉄道騒音の現況調査の結果は、表に示すとおりであり、等価騒音レベル（LAEQ）は、昼間が60デシベル、夜間が55デシベルとなっている。

<table>
<thead>
<tr>
<th>調査地点</th>
<th>調査地点位置</th>
<th>等価騒音レベル（LAEQ）（デシベル）</th>
<th>線路構造</th>
<th>対象路線</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐ ☐</td>
<td>吹田市南吹田四丁目</td>
<td>☐</td>
<td>☐</td>
<td>盛土</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>東海道貨物線梅田貨物線</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>東海道本線</td>
</tr>
</tbody>
</table>

(注) 1. 時間区分は、昼間が7～23時、夜間が23時～翌日7時である。
2. 調査地点の測点位置は、近接側軌道中心から500m地点である。
列車の走行に伴う騒音

予測・評価の概要

列車の走行に伴う騒音の影響の予測・評価は、環境影響評価書（平成 年 月）と同様の手法で行うこととし、予測の概要は表 に、評価の概要は表 に示すとおりである。

なお、及び地点については、関連工事区間（既設線の移設工事を行う区間）を含む全線についても評価を行うこととした。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測項目</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>列車の走行</td>
<td>予測項目</td>
<td>鉄道騒音</td>
</tr>
<tr>
<td></td>
<td>予測事項</td>
<td>等価騒音レベル（L_{Aeq}）</td>
</tr>
<tr>
<td></td>
<td>予測地点</td>
<td>目地、目地、目地点（図 参照）</td>
</tr>
<tr>
<td></td>
<td>予測時期</td>
<td>事業計画路線完成後の供用最大時</td>
</tr>
<tr>
<td></td>
<td>予測方法</td>
<td>環境影響評価書（平成 年 月）で適用した「在来鉄道騒音の予測評価手法について」（騒音制御 推進・3 事業計画）社 日本騒音制御工学会）で示されている提案式</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>鉄道騒音</td>
<td>環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
</tr>
</tbody>
</table>
| | 「在来鉄道の新設又は大規模改良に際しての騒音対策の指針」（平成7年 月 目、環大第 号 環境庁大気保全局長通知）との対比 | 事業計画路線で、新線の指針である「等価騒音レベルとして昼間は デシベル以下、夜間は デシベル以下」との対比を行う。
連接工事区間を含む全線、地地点との対比を行う。
大規模改良線の指針である「騒音レベルの状況を改良前より改善すること」との対比を行う。 |
| | 事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。 | 鉄道騒音の等価騒音レベルについて、現行認可案と変更案の比較・検証を行う。 |

表 に、鉄道騒音に関する予測の概要

表 に、鉄道騒音に関する評価の概要
予測方法

予測手順

騒音の予測の手順は図に示すおとりであり、予測地点ごとの断面構造、列車速度等を基に、先ず1列車の走行時の騒音レベルの最大値（L_{max}）を求め、さらに列車の通過時間から単発騒音暴露レベル（L_A）を求めた。次に、評価時間帯の列車種別ごとの列車本数から等価騒音レベル（L_{eq}）を求めた。

<table>
<thead>
<tr>
<th>騒音レベルの最大値を求める予測モデル</th>
<th>事業計画</th>
<th>地域の状況</th>
</tr>
</thead>
<tbody>
<tr>
<td>予測地点の選定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>予測条件の設定</td>
<td></td>
<td></td>
</tr>
<tr>
<td>騒音レベルの最大値の予測</td>
<td></td>
<td></td>
</tr>
<tr>
<td>単発騒音暴露レベルの予測</td>
<td>番列本数</td>
<td></td>
</tr>
<tr>
<td>等価騒音レベルの予測</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

図 予測手順

予測モデル

在来鉄道の走行音に関する予測方法としては、東京大学石井教授（当時）らによって提案された方法（以下「石井らの方法」という。）がこれまで一般に使用されてきた。しかし、石井らの方法は、パラスト軌道の高架橋において発生する騒音レベルを予測するものであり、適用条件が限定されていた。

これに対し、財団鉄道総合技術研究所の森藤（当時）らによって在来鉄道騒音に関する最近の研究結果を参照し、より広い条件で適用可能な騒音の予測手法が提案された。

本事業では、地平部、盛土部、高架部等多様な状態が存在することから、広い条件での適用可能な予測手法である森藤らの提案式を用いて予測することとした。

(注) 1. 「在来線高架鉄道からの騒音予測手法案について」（騒音制御 日本騒音制御工学会）
2. 「在来鉄道騒音の予測改善法について」（騒音制御 日本騒音制御工学会）
在来鉄道の走行時の騒音は、種々の騒音が複合したものであり、森藤らの提案式はそれらの騒音のうち、列車が走行するときの車両音、構物物音（コンクリート高架橋の振動から出る音）、車両機器音（主電動機の冷却用ファン音、モーターファン音）の3種類が主音源として、それぞれ計算し、これらを合成してその地点の鉄道騒音を求めるものである。

なお、このモデルの適用条件は、次のとおりとなっている。

- 列車は速度 30〜60km/の範囲で定速走行している。
- 受音点は軌道から3〜5mの距離の範囲にある。
- 線路は平坦、直線であり、ロングレールが敷設されている。レール表面には目立った凸凹がない。軌道は、バスタレート軌道またはスラブ軌道である。
- 列車編成は極端に短くない。
- 対象列車は電車である。
- 車輪は通常の構造であり、踏面には著しいフラットやコルゲーション（波状の凹凸）がない。

図8-12騒音レベルの最大値（L_{max})の計算

長さLmの列車が速度Vkm/で走行したときの騒音の予測式は、図8-12に示すとおり各変数を定義すると式L_{max}=S_{a}+S_{b}+d_{a}（近接軌道）で表される。

![Illustration of sound level calculation](image-url)

図8-12 音源、受音点の配置、行路差（dag）の説明
電車

転動音

\[L_{\text{MAX}}(R) = P W L - 5 - 10 \log_{10} d_0 + 10 \log_{10} \left(\frac{l/2}{d_0} \right) + \tan^{-1} \left(\frac{l}{2d_0} \right) + \text{L} \]

ここで、\(L_{\text{MAX}}(R) \)：転動音の騒音レベル最大値（デシベル）

\(P W L \)：転動音の音源パワーレベル（デシベル）

\[P W L = P W L(\text{dB}) + 10 \log_{10} (V/\text{dB}) \]

スラブ軌道：\(P W L \)\((\text{dB}) = \) \(\)\(\)\(\)デシベル

パラスト軌道：\(P W L \)\((\text{dB}) = \) \(\)\(\)\(\)デシベル

\(d_0 \)：列車走行軌道中心と受音点間の距離（m）

\(l \)：列車長（m）

\(V \)：列車速度（m/s）

\(\text{L} \)：防音壁による遮蔽減衰効果（デシベル）

構造物音

\[L_{\text{MAX}}(C) = P W L - 5 - 10 \log_{10} d_0 + 10 \log_{10} \left(\frac{l/2}{d_0} \right) + \tan^{-1} \left(\frac{l}{2d_0} \right) + \text{L} \]

ここで、\(L_{\text{MAX}}(C) \)：構造物音の騒音レベル最大値（デシベル）

\(P W L \)：構造物音の音源パワーレベル（デシベル）

\[P W L = P W L(\text{dB}) + 10 \log_{10} (V/\text{dB}) \]

\[P W L = \] \(\)\(\)\(\)デシベル

（過小な予測を行わないよう、最大値の \(\text{L} \)\(\)デシベルを用いた）

\(d_0 \)：構造物下部中央と受音点間の距離（m）

\(\text{L} \)：補正値（デシベル）

\(r < 4 \)\(h \)\(\)\(\)の場合：\(\)\(\)\(\)\(\)

\(r > 4 \)\(h \)\(\)\(\)の場合：\(\)\(\)\(\)\(\)

\(r \)：高架橋中央と受音点の水平距離（m）

\(h \)：高架橋下面の地面からの高さ（m）

車両機器音

\[L_{\text{MAX}}(M) = P W L - 5 - 10 \log_{10} d_0 + 10 \log_{10} \left(\frac{l/2}{d_0} \right) + \tan^{-1} \left(\frac{l}{2d_0} \right) + \text{L} \]

ここで、\(L_{\text{MAX}}(M) \)：車両機器音の騒音レベル最大値（デシベル）

\(P W L \)：車両機器音の音源パワーレベル（デシベル）

\(d_0 \)：車両機器と受音点間の距離（m）

\(l \)：列車長（m）

\(\text{L} \)：防音壁による遮蔽減衰効果（デシベル）
ここで、L_{max} (M) : 車両機器音の騒音レベル最大値（デシベル）
PW L_e : 車両機器音の源音パワーレベル（デシベル）

\[PW L_e = 10 \log (n V / \tau_0) + 10 \log (l_1 / l) \]

外扇型モータの場合
スラブ軌道 : \(l_1 = 10 \)デシベル
バラスト軌道 : \(l_1 = 20 \)デシベル
内扇型モータの場合
スラブ軌道 : \(l_1 = 10 \)デシベル
バラスト軌道 : \(l_1 = 20 \)デシベル

\(n \) : 歯車比
\(l_1 \) : モーター搭載車両の長いの合計（m）

\[\beta_1 \] : 防音壁等による遮へい減衰効果（デシベル）

\(\square \) 防音壁等による遮へい減衰の評価法

防音壁やそのほかの構造物によって音の伝搬経路が遮断される場合の音の回折の効果は、山下・子安の計算図表を用いることによって求められる。ここでは、参考文献に示されている簡便な方法を採用する。

なお、防音壁に吸音材がない場合、防音壁側の軌道を走行する車両の騒音に対しては、車両と防音壁間の多重反射の影響によって防音壁の効果は図から求めた値 \(\beta_1 \)より小さくなる。多重反射の影響は、防音壁の高さに依存するが、1 〜 2 m高さの防音壁の場合、多重反射によるレベル増は約 2 デシベルである。したがって、吸音材なしの防音壁の場合、防音壁側の軌道を走行する列車の騒音に対しては、防音壁の効果を表す補正値として、\(\beta = \beta_1 + 2 \)デシベルを採用する。

図 障害物の遮へい減衰効果 \(\beta_1 \)と行路差 \(d \)の関係（実線を読み取る）

（注）1.「来来線高架館道からの騒音予測手法について」（騒音制御 2004 2 3 4（488～505））から抜粋
2.「来来館道騒音の予測評価手法について」（騒音制御 2004 2 3 4（488～505）（社日本騒音制御工学会）
貨物車

式（10）の適用できる対象列車は電車であることから、貨物列車走行時の騒音予測には適用できないが、貨物列車走行時の騒音も基本的には指向性有限長線音源と考えられることから、式（10）と同様に式（10）で求めることとした。

この時の音源パワーレベルは、貨物列車走行時の騒音調査結果をもとに設定した。したがって、音源パワーレベルには、転動音と車両機器音の両方が含まれている。

$$L_{\text{max}}(E) = \text{PWLE} - 5 - 10 \log_{10} d_1 + 10 \log_{10} \left(\frac{\ell/2d_1}{1+(\ell/2d_1)^2} \right) + \theta_1$$

ここで、$$L_{\text{max}}(E)$$：貨物車の騒音レベル最大値（デシベル）

- $$\theta_1$$：防音壁等による遮へい減衰効果（デシベル）
- PWLE：貨物車の音源パワーレベル（デシベル[m])

$$\text{PWLE} = \theta_3 \log_{10} V + \theta_2$$

貨物車の音源パワーレベルは、「大阪外環状鉄道（都島ー久宝寺）建設事業に係る環境影響評価書」（平成 24年2月、大阪外環状鉄道㈱）に示されている、城東貨物線での現地測定結果より図 1に示すとおり設定した。

資料：「大阪外環状鉄道（都島ー久宝寺）建設事業に係る環境影響評価書」（平成 24年2月、大阪外環状鉄道㈱）

図 1：列車速度と音源パワーレベルの関係（貨物車）
騒音レベルの最大値（L_{max}）

列車1編成が走行したときの騒音レベルの最大値は、式 (1)と式 (2)及び式 (3)で求めた騒音レベルを式 (4)及び式 (5)を用いて合成することにより求めた。

電車

$$L_{\text{max}} = 10 \log_{10} \left[10^{\frac{L_{\text{max}} (R)}{10}} + 10^{\frac{L_{\text{max}} (C)}{10}} + 10^{\frac{L_{\text{max}} (M)}{10}} \right]$$

貨物列車

$$L_{\text{max}} = 10 \log_{10} \left(10 \frac{L_{\text{max}} (E)}{10} + 10 \frac{L_{\text{max}} (C)}{10} \right)$$

騒音レベル最大値（L_{max}）と単発騒音暴露レベル（L_{AE}）の関係

電車の場合の L_{max} と L_{AE} の関係は、列車長（L (m)）と速度（V (km/h)）より式 (6)を用いて求めた。

$$L_{\text{AE}} = L_{\text{max}} + 10 \log_{10} \left(\frac{V}{10} \right)$$

貨物車の場合の L_{max} と L_{AE} の関係は、「大阪外環状鉄道（都島～久宝寺）建設事業に係る環境影響評価書」に示されている、城東貨物線の現地測定結果（図 31）を参照）より検討した式 (7)を用いていることとした。ただし、適用範囲は列車速度が 40～60km/h の場合である。

$$L_{\text{AE}} = \frac{1}{2} L_{\text{max}} + 10 \log_{10} \left(\frac{V}{10} \right)$$

![騒音レベルの最大値（L_{max}）と騒音暴露レベル（L_{AE}）の関係](image.png)

資料：「大阪外環状鉄道（都島〜久宝寺）建設事業に係る環境影響評価書」
（平成12年2月、大阪外環状鉄道㈱）

図13 騒音レベルの最大値（L_{max}）と騒音暴露レベル（L_{AE}）の相関図
等価騒音レベル（L_{Aeq}）の計算

電車及び貨物列車走行時の等価騒音レベルは、方向別車種別のL_{AE}と時間帯別の同列車本数をもとに、式 \[L_{Aeq} = 10 \log_{10} \left(\sum_{i=1}^{n} \frac{L_{AEi}}{T} \right) \] を用いて求めた。

ここで、L_{AEi} : 方向別車種別の単発騒音暴露レベル（デシベル）
\[n : 列車本数 \]
\[T : L_{Aeq}の対象としている時間（秒） \]
（7時～8時はT = 240秒、9時～翌日7時はT = 2160秒）

予測条件

予測地点

予測地点は、表 \[\text{列車種類} \]及び図 \[\text{列車種類} \]に示すとおり、\[\text{列車種類} \]及び\[\text{列車種類} \]地点の3地点とし、「在来鉄道の新設又は大規模改良に際しての騒音対策の指針」（平成7年12月17日、環大一号線環境庁大気保全局長通知）に準拠して近接側軌道中心から\[\text{列車種類} \]m地点の地上\[\text{列車種類} \]m高さを基本とした。

既設線の列車の走行状況

既設線の列車の走行状況は、図 \[\text{列車種類} \]に示すとおりであり、現地観測により把握を行った。

<table>
<thead>
<tr>
<th>貨物</th>
<th>特急</th>
<th>新快速</th>
<th>快速</th>
<th>普通</th>
<th>回送</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

（注）1．数値1列車運行本数を示す。
2．縦掛け（■）は、運行本数が0本であることを示す。

図 \[\text{列車種類} \] 既設線の列車の走行状況
構造条件及び運行条件

事業計画路線及び既設線の方向別車種別運行本数は表11に示すとおりである。

<table>
<thead>
<tr>
<th>路線名</th>
<th>方向</th>
<th>列車種別</th>
<th>運行本数（本）</th>
<th>線路番号</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>真間</td>
<td>夜間</td>
</tr>
<tr>
<td>事業計画路線</td>
<td>都島行</td>
<td>2M2T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4M4T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>新大阪行</td>
<td>2M2T</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>4M4T</td>
<td></td>
<td></td>
</tr>
<tr>
<td>東海道貨物線</td>
<td>京都行</td>
<td>貨物車</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>新大阪行</td>
<td>貨物車</td>
<td></td>
<td></td>
</tr>
<tr>
<td>梅田貨物線</td>
<td>京都行</td>
<td>貨物車</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>新大阪行</td>
<td>貨物車</td>
<td></td>
<td></td>
</tr>
<tr>
<td>既設線</td>
<td>東海道本線</td>
<td>特急</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>新快速</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>京都行</td>
<td>快速</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>普通</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>回送</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>新大阪行</td>
<td>特急</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>新快速</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>快速</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>普通</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>回送</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

※線路番号は図12に示すとおりである。
<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>運行条件</th>
<th>構造条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業計画路線</td>
<td>大阪外環状線</td>
<td>都島行</td>
<td>2M2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4M4T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>2M2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4M4T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>高架</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>運行条件</th>
<th>構造条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業計画路線</td>
<td>大阪外環状線</td>
<td>都島行</td>
<td>2M2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4M4T</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>2M2T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4M4T</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>高架</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>運行条件</th>
<th>構造条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>梅田貨物線</td>
<td>京都行</td>
<td>貨物車</td>
<td></td>
</tr>
<tr>
<td></td>
<td>新大阪行</td>
<td>貨物車</td>
<td></td>
</tr>
<tr>
<td>既設線</td>
<td>東海道本線</td>
<td>京都行</td>
<td>特急</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>新快速</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>快速</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>普通</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>回送</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>高架</td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>特急</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>新快速</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>快速</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>普通</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>回送</td>
</tr>
</tbody>
</table>
音源パワーレベル等
予測計算に適用する音源パワーレベル等は、表に示すとおりである。

<table>
<thead>
<tr>
<th>項 目</th>
<th>パワーレベル等</th>
</tr>
</thead>
<tbody>
<tr>
<td>転動音</td>
<td></td>
</tr>
<tr>
<td>パラスト</td>
<td>電車の場合はPWLR = デシベル</td>
</tr>
<tr>
<td></td>
<td>貨物車の場合は図に示すの相関式</td>
</tr>
<tr>
<td>ス ラ ブ</td>
<td>電車の場合はPWLR = デシベル</td>
</tr>
<tr>
<td>車両機器音</td>
<td></td>
</tr>
<tr>
<td>パラスト</td>
<td>電車は全て内扇型モータの値を使用 = デシベル</td>
</tr>
<tr>
<td></td>
<td>貨物車は図に転動音と合成されて含まれているため、車両機器音として見込まない</td>
</tr>
<tr>
<td>ス ラ ブ</td>
<td>電車は全て内扇型モータの値を使用 = デシベル</td>
</tr>
</tbody>
</table>

歯車比
事業計画路線：
東海道本線：特急・新大阪行
特急・上記以外
新快速
快速
普通、回送
予測結果

○ ○ 地点

事業計画路線による鉄道騒音の予測結果は、表 ○ ○ ○ に示すとおりである。

鉄道騒音の等価騒音レベル（L_{Aeq}）は、計画線（事業計画路線及び関連工事区間）の近接側軌道中心から mmm地点の地上 m高さにおいて、昼間が deシベル、夜間が deシベルとなっている。

表 ○ ○ ○ 事業計画路線による鉄道騒音の予測結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>騒音レベルのピーク値（デシベル）</th>
<th>等価騒音レベル（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>都島行</td>
<td>新大阪行</td>
</tr>
<tr>
<td>2 M 2 T</td>
<td>4 M 4 T</td>
<td>2 M 2 T</td>
</tr>
</tbody>
</table>

○ ○、○ ○ 地点

事業計画路線及び関連工事区間による鉄道騒音の予測結果は、表 ○ ○ ○ に示すとおりである。

○ ○ 地点の計画線の近接側軌道中心から mmm地点及び mm地点の計画線の近接側軌道中心から mm地点（最近接の住居立地位置）の地上 m高さにおける鉄道騒音の等価騒音レベル（L_{Aeq}）は、事業計画路線による鉄道騒音は昼間が deコデシベル、夜間が deコデシベル、関連工事区間による鉄道騒音は昼間が deコデシベル、夜間が deコデシベルとなっている。

表 ○ ○ ○ 事業計画路線及び関連工事区間による鉄道騒音の予測結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>騒音レベルのピーク値（デシベル）</th>
<th>等価騒音レベル（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>都島行</td>
<td>新大阪行</td>
</tr>
<tr>
<td>2 M 2 T</td>
<td>4 M 4 T</td>
<td>2 M 2 T</td>
</tr>
</tbody>
</table>

○ ○ 関連工事区間による鉄道騒音 / 計画線の近接側軌道中心から mmm地点 ○ ○

<table>
<thead>
<tr>
<th>予測地点</th>
<th>騒音レベルのピーク値（デシベル）</th>
<th>等価騒音レベル（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>京都行</td>
<td>新大阪行</td>
</tr>
<tr>
<td>貨 物</td>
<td>旅 客</td>
<td>貨 物</td>
</tr>
</tbody>
</table>

（注） ○ ○ 地点は、最近接の住居立地位置（近接側軌道中心から mm地点）における値を示す。
評価及び環境保全対策の検討

地点

鉄道騒音の評価は、環境への影響を最小限にとどめるよう環境保全について配慮されていることとする。「在来鉄道の新設又は大規模改良に際しての騒音対策の指針」（平成7年10月30日、環大元第145号環境庁大気保全局長通知）に基づいて行うこととした。具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併せて、新線の指針である「等価騒音レベルとして昼間は・デシベル以下、夜間は・デシベル以下とすること」との対比を行った。

鉄道騒音の評価結果は、表に示すとおりである。鉄道騒音の等価騒音レベル（L_{Aeq}）は、昼間が・デシベル、夜間が・デシベル以下となっており、新線の指針を満足している。

また、鉄道騒音については、環境への影響を最小にとどめるよう以下に示す環境保全対策を講じる。

線路は、急なカーブや分岐部を除いてロングレールを敷設する。

高架橋の高欄は、遮音性の高い鉄筋コンクリート構造とする。

必要に応じ、防音壁の嵩上げ、防音壁の吸音処理等の措置を講じる。

高架橋の軌道構造について、本予測の前提条件として防振スラブと比較して構造物音の低減効果があるとされる「弾性マクラギ直結軌道」を採用することにより、鉄道騒音のさらなる低減に努める。

沿線に近接した住居及び中高層住居等で、指針に示された騒音レベルを超える地点がある場合は、その状況に応じて防音壁の嵩上げ、防音壁の吸音処理、高架橋でのパラスト散布等の措置を講じる。

事後調査については、関係機関とも協議のうえ適切に実施することとし、その結果、環境保全目標を超えるなど対策が必要と認められる場合は、その状況に応じて技術的検討を行い、適切な対策を講じることとする。

中高層住居に対する遮音壁の嵩上げ等の必要性については、事前に検討を行うこととする。

供用時の騒音及び振動に対する苦情について、西日本旅客鉄道株式会社とも連携をとりながら、適切に対応できるよう体制を整えることとする。

以上より、鉄道騒音は周辺環境に著しい影響を及ぼさないものと考えられる。
表 事業計画路線による鉄道騒音の予測結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>騒音レベルのピーク値（デシベル）</th>
<th>等価騒音レベル（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>都島行</td>
<td>新大阪行</td>
</tr>
<tr>
<td>2 M 2 T</td>
<td>4 M 4 T</td>
<td>2 M 2 T</td>
</tr>
</tbody>
</table>

注） 鉄道騒音の予測に際して、前提とした環境保全対策は、以下の通りである。
- 線路は、ロングレールを敷設する。
- 高架橋の高欄は、遮音性の高い鉄筋コンクリート構造とする。
- 高架区間に、オーバーハング高さの高欄を設置する。

Ⅲ Ⅲ、Ⅲ、Ⅲ地点

鉄道騒音の評価は、Ⅲ環境への影響を最小限にとどめるよう環境保全について配慮されていること、Ⅲ「在来鉄道の新設又は大規模改良に際しての騒音対策の指針」（平成７年 0月 0日、環大一第Ⅲ号環境庁大気保全局長通知）に基づいて行うこととした。具体的には、環境影響を回避・低減するための配慮が適切であるかの評価を行い、併せて、事業計画路線については、新線の指針である「等価騒音レベルと昼間はⅢデシベル以下、夜間はⅢデシベル以下とすること」との対比、関連工事区間を含む全線については、大規模改良線の指針である「騒音レベルの状況を改良前より改善すること」との対比を行った。

鉄道騒音の評価結果は、表に示すとおりである。鉄道騒音の等価騒音レベル（L_{Aeq}）は、昼間がⅢデシベル、夜間がⅢデシベル以下となっており、新線の指針を満足している。関連工事区間（東海道本線等）を含む全線については、事業計画路線完成後の鉄道騒音の等価騒音レベル（L_{Aeq}）は、Ⅲ及びⅢ地点のいずれにおいても、現在線による鉄道騒音の等価騒音レベル（L_{Aeq}）以上となっており、大規模改良線の指針を満足していない。

したがって、鉄道騒音による影響のさらなる回避・低減のため、環境保全対策追加実施の検討を行うこととした。具体的には図に示すとおり、盛土区間の法肩にオーバーハング高さの防音壁を設置することとした。環境保全対策追加実施後の鉄道騒音の予測・評価結果は、表に示すとおりであり、全ての地点において、新線の指針及び大規模改良線の指針を満足している。

また、鉄道騒音については、環境への影響を最小にとどめるよう以下に示す環境保全対策を講じる。
- 線路は、急なカーブや分岐部を除いてロングレールを敷設する。
- 高架橋の高欄は、遮音性の高い鉄筋コンクリート構造とする。
- 必要に応じ、防音壁の増設、防音壁の吸音処理等の措置を講じる。

- Ⅲ-
高架橋の軌道構造について、本予測の前提条件とした防振スラブと比較して構造物音の低減効果があるとされる「弾性マクラギ直結軌道」を採用することにより、鉄道騒音のさらなる低減に努める。

沿線に近接した住居及び中高層住居等で、指針に示された騒音レベルを超える地点がある場合は、その状況に応じて防音壁の嵩上げ、防音壁の吸音処理、高架橋でのバラスト散布等の措置を講じる。

事後調査については、関係機関とも協議のうえ適切に実施することとし、その結果、環境保全目標を超えるなど対策が必要と認められる場合は、その状況に応じて技術的検討を行い、適切な対策を講じることとする。

中高層住居に対する遮音壁の嵩上げ等の必要性については、事前に検討を行うこととする。

盛土区間の法肩に△△△+△△△m高さの防音壁を設置する。

供用時の騒音及び振動に対する苦情について、西日本旅客鉄道株式会社とも連携をとりながら、適切に対応できるよう体制を整えることとする。

以上より、鉄道騒音は周辺環境に著しい影響を及ぼさないものと考えられる。
表 ○○○○○ 鉄道騒音の評価結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>等価騒音レベル（デシベル）</th>
<th>増加レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>等価騒音レベル</td>
<td>等価騒音レベル</td>
<td>等価騒音レベル</td>
</tr>
</tbody>
</table>

（注）1. 時間区分は、昼間が7時〜翌日7時、夜間が10時〜翌日7時である。
2. 等価騒音レベルは、予測モデルによる推計値を示す。
3. 増加レベルにおいて、緑色（）は、大規模改良の指針を満たしていないことを示している。
4. 目的地点は、新接続の住居立地位置（近接側軌道中心から□m地点）における値を示す。
5. 鉄道騒音の予測に際して、前提とした環境基準は、以下に示すとおりである。
 - 線路は、ニュートラルを敷設する。
 - 高架橋の高欄は、適音性の高い鉄筋コンクリート構造とする。
 - 高架区間には、□□□□□□m高さの高欄を設置する。

表 ○○○○○ 環境保全対策追加実施後の鉄道騒音の予測・評価結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>等価騒音レベル（デシベル）</th>
<th>増加レベル</th>
</tr>
</thead>
<tbody>
<tr>
<td>等価騒音レベル</td>
<td>等価騒音レベル</td>
<td>等価騒音レベル</td>
</tr>
</tbody>
</table>

（注）1. 時間区分は、昼間が7時〜翌日7時、夜間が10時〜翌日7時である。
2. 等価騒音レベルは、予測モデルによる推計値を示す。
3. 目的地点は、新接続の住居立地位置（近接側軌道中心から□m地点）における値を示す。
4. 鉄道騒音の予測に際して、前提とした環境基準は、以下に示すとおりである。
 - 線路は、ニュートラルを敷設する。
 - 高架橋の高欄は、適音性の高い鉄筋コンクリート構造とする。
 - 高架区間には、□□□□□□m高さの高欄を設置する。
 - 盛土区間の法面には、□□□□□□m高さの防音壁を設置する。
図1 3200m 盛土区間における防音壁設置による環境保全対策の状況
事業内容の変更に係る検証結果

地点

現行認可案と変更案の環境保全対策実施後における鉄道騒音の比較は、表及び図に示すとおりである。

地点については、線路構造が盛土構造から高架構造に変更することにより、変更案の計画線の近接側道路中心から200m地点の鉄道騒音の等価騒音レベル（L_{Aeq}）は、現行認可案では昼間が10デシベル、夜間が15デシベル、変更案では昼間が12デシベル、夜間が18デシベルとなり、4デシベル増加しているが、いずれにおいても新線の指針を十分に満足している。

なお、環境保全対策に関する考え方については、環境影響評価書（平成10年4月）では、盛土区間の揚土法に200m+50m高さの防音壁を設置することを基本としているが、事業内容の変更後についても同様の考え方となっており、高架区間については200m+50m高さの高欄を設置することを基本としている。さらに、高架橋の軌道構造について、本予測の前提条件とした防振スラブと比較して構造物の低減効果があるとされる「弾性マクラギ直結軌道」を採用することにより、鉄道騒音のさらなる低減に努めることとしている。また、沿線に近接した住居及び中高層住居等を対象とした環境保全対策についても、環境影響評価書（平成10年4月）に示している大阪府知事の意見に対する事業者の見解の考え方を踏襲している。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
表 現行認可案と変更案の環境保全対策実施後ににおける鉄道騒音の比較（地点）

<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>時間区分</th>
<th>変更案</th>
<th>等価騒音レベル（デシベル）</th>
<th>現行認可案と変更案の比較</th>
<th>新線の指針との対比</th>
</tr>
</thead>
<tbody>
<tr>
<td>事業計画路線</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>峰間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>事業計画路線</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>夜間</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）1. 時間区分は、昼間が7 〜 11時、夜間が11時〜翌日7時である。
2. 変更案において、予測の前提とした環境保全対策は、以下に示すとおりである。
 □ 前線区は、ロングレールを敷設する。
 □ 高架橋の高欄は、遮音性の高い鉄筋コンクリート構造とする。
 □ 高架区間には、高さが+ m高さの高欄を設置する。

図 現行認可案/事業計画路線

図 変更案/事業計画路線

（注）数值はデシベルを示す。

図 環境保全対策実施後ににおける等価騒音レベルの断面コンター図（地点/昼間）
現行認可案と変更案の環境保全対策実施後における鉄道騒音の比較は、表-1及び図-2に示すとおりである。

変更案の計画線の近接側軌道中心から10m地点の鉄道騒音の等価騒音レベル（L_{Aeq})は、現行認可案では昼間及び夜間ともに23デシベルとなっている。一方、変更案では昼間及び夜間ともに21デシベルとなっており、現行認可案に比べて1デシベル小さくなっている。これは、変更案では、計画線の近接側軌道中心は10m近寄るが、盛土法肩に3.0m+15m高さの高欄を設置するためである。

変更案の計画線の近接側軌道中心から30m地点（最近接の住宅立地位置）の鉄道騒音の等価騒音レベル（L_{Aeq})は、現行認可案では昼間が23デシベル、夜間が21デシベルとなっている。一方、変更案では昼間が21デシベル、夜間が21デシベルとなっており、現行認可案に比べて1デシベル大きくなっている。これは、現行認可案では事業計画路線が盛土構造であるため、関連工事区間の騒音が事業計画路線により遮蔽されることに対して、変更案では事業計画路線が高架構造となるため、関連工事区間の騒音が事業計画路線により遮蔽されないためである。ただし、現行認可案と変更案のいずれにおいても、環境保全対策実施後に鉄道騒音は、現在線の鉄道騒音を下回っている。

なお、環境保全対策に関する考え方については、環境影響評価書（平成32年2月）では、盛土区間の擁壁法肩に1.0m+10m高さまたは1.0m+15m高さの高欄を設置することを基本としているが、内容の変更後についても同様の考え方となっており、高架区間には1.0m+15m高さの高欄を設置することを基本としている。

さらに、高架橋の軌道構造について、本予測の前提条件として防振スラブと比較して構造物物の低減効果があるとされる「弾性マクラウグ直結軌道」を採用することにより、鉄道騒音のさらなる低減に努めることとしている。また、沿線に近接した住居及び中高校住居等を対象とした環境保全対策についても、環境影響評価書（平成32年2月）に示している大阪府知事の意見に対する事業者の見解の考え方を踏襲している。

以上より、事業内容の変更に伴う環境影響の範囲又は程度については、著しい差異はないものと判断した。
表 現行認可案と変更案の環境保全対策実施後における鉄道騒音の比較（ □ □ 地点）

<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>時間</th>
<th>区分</th>
<th>現行認可案の計画線</th>
<th>变更案の計画線</th>
<th>現在線</th>
<th>現行認可案と変更案の比較</th>
<th>現在線と変更案の比較</th>
<th>現在線と変更案の比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>関連工及び計画区間 事業区画線</td>
<td>昼間</td>
<td>☐m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-m</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>-m</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

注 □ □ 時間区分は、昼間に7時〜夕方7時である。
□ □ □ 地点では、現行認可案における軌道位置について、上記 ☐m地点の位置は近接軌道センターから ☐m地点となっている。
□ 变更案については、環境保全対策として、盛土法に ☐m+ ☐m高さの防音壁を設置した際の値を示す。
□ 变更案において、予測の前提とした環境保全対策は、以下に示すとおりである。
■ 線路は、ロングレールを敷設する。
■ 高架橋の高架は、遮音性の高い鉄筋コンクリート構造とする。
■ 高架区間には、 ☐m+ ☐m高さの高架を設置する。
■ 盛土区間の法布には、 ☐m+ ☐m高さの防音壁を設置する。

表 現行認可案と変更案の環境保全対策実施後における鉄道騒音の比較（ □ □ 地点）

<table>
<thead>
<tr>
<th>予測地点</th>
<th>路線</th>
<th>時間</th>
<th>区分</th>
<th>現行認可案の計画線</th>
<th>变更案の計画線</th>
<th>現在線</th>
<th>現行認可案と変更案の比較</th>
<th>現在線と変更案の比較</th>
<th>現在線と変更案の比較</th>
</tr>
</thead>
<tbody>
<tr>
<td>関連工及び計画区間 事業区画線</td>
<td>昼間</td>
<td>☐m</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>-m</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td></td>
<td>-m</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

注 □ □ 時間区分は、昼間に7時〜夕方7時である。
□ □ □ 地点では、現行認可案における軌道位置について、上記 □m地点の位置は近接軌道センターから □m地点となっている。
□ 变更案については、環境保全対策として、盛土法に □m+ □m高さの防音壁を設置した際の値を示す。
□ 「 - 」は、鉄道敷地内であることを示す。
□ 变更案において、予測の前提とした環境保全対策は、以下に示すとおりである。
■ 線路は、ロングレールを敷設する。
■ 高架橋の高架は、遮音性の高い鉄筋コンクリート構造とする。
■ 高架区間には、 □m+ □m高さの高架を設置する。
■ 盛土区間の法布には、 □m+ □m高さの防音壁を設置する。
現行認可案 / 事業計画路線及関連工事区間

変更案 / 事業計画路線及関連工事区間

（注）数値はデシベルを示す。

図 環境保全対策実施後における等価騒音レベルの断面コンター図 (□ □ 地点 / 昼間)

現行認可案 / 事業計画路線及関連工事区間

変更案 / 事業計画路線及関連工事区間

（注）数値はデシベルを示す。

図 環境保全対策実施後における等価騒音レベルの断面コンター図 (□ □ 地点 / 昼間)
5.3.3 建設機械の稼働に伴う騒音

(1) 予測・評価の概要

建設機械の稼働に伴う騒音の影響の予測・評価は、環境影響評価書（平成14年11月）と同様の手法で行うこととし、予測の概要は表5.3.10、評価の概要は表5.3.11に示すとおりである。

表5.3.10 建設作業騒音に関する予測の概要

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測項目</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設機械の稼働</td>
<td>建設作業騒音</td>
<td>建設作業騒音</td>
</tr>
<tr>
<td>予測項目</td>
<td>騒音レベルの90%レンジ上端値（(L_{A5}))</td>
<td>騒音レベルの90%レンジ上端値（(L_{A5}))</td>
</tr>
<tr>
<td>予測地点</td>
<td>工事区域の周辺地域</td>
<td>工事区域の周辺地域</td>
</tr>
<tr>
<td>予測時期</td>
<td>建設工事最盛時</td>
<td>建設工事最盛時</td>
</tr>
<tr>
<td>予測方法</td>
<td>環境影響評価書（平成14年11月）で適用した点音源の伝播予測式</td>
<td>環境影響評価書（平成14年11月）で適用した点音源の伝播予測式</td>
</tr>
</tbody>
</table>

表5.3.11 建設作業騒音に関する評価の概要

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設作業騒音</td>
<td>①環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
</tr>
<tr>
<td>②騒音規制法及び大阪府生活環境の保全等に関する条例に定める規制基準との対比</td>
<td>建設作業騒音が工事区域の敷地境界線において85デシベルを超える大きさでないこと。</td>
<td>建設作業騒音の騒音レベルの90%レンジ上端値（(L_{A5}))との対比を行う。</td>
</tr>
<tr>
<td>③事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td>主な工事内容及び工事敷地境界での騒音レベルの90%レンジ上端値（(L_{A5}))については、現行認可案と変更案との比較・検証を行う。</td>
<td></td>
</tr>
</tbody>
</table>
(2) 予測方法

(a) 予測手順

建設作業騒音の予測の手順は、図 5.3.9 に示すとおりであり、工事計画に基づいて、予測時期に応じた建設作業を抽出し、各騒音発生源のパワーレベル及びその位置などの計算条件を設定した上で、予測モデルを用いて建設機械の稼動に伴う騒音を予測した。

![図 5.3.9 建設作業騒音の予測手順]

(b) 予測モデル

各建設機械から伝搬する騒音の予測は、音源を点音源と見なし、式(5.3.10)に示す距離減衰、障壁による減衰を考慮した点音源モデルを用いた。

\[
SL = 10 \log_{10} \{ \sum_{i} 10^{SL_i/10} \} \\
SL_i = 10 \log_{10} \{ \sum_{f} 10^{SPL_{i,f} + \alpha f}/10 \} \tag{5.3.10}
\]

ここで、
- \(SL \) : 受音点の騒音レベル (デシベル)
- \(SL_i \) : 音源 \(i \) による受音点の騒音レベル (デシベル)
- \(SPL_{i,f} \) : 音源 \(i \) による受音点の周波数 \(f \) の音圧レベル (デシベル)
- \(\alpha_f \) : A特性による周波数 \(f \) の補正値 (デシベル)
- \(PWL_{i,f} \) : 音源 \(i \) の周波数 \(f \) のパワーレベル (デシベル)
- \(r_i \) : 音源 \(i \) と受音点の間の距離 (m)
- \(\alpha_{dif} \) : 音源 \(i \) の周波数 \(f \) に対する障壁による減衰 (デシベル)
障壁による減衰（α_{Diff}）は、前川のチャートを数式表現した最近の近似式①を用い、音源（S）と受音点（P）の地盤高さを結んで地形による仮想障壁の地盤面（G）を想定し、地盤による反射を考慮して式（5.3.11）により求めた。

$$\alpha_{Diff} = \alpha_{Diff_1} - \alpha_{Diff_2}$$

$$\alpha_{Diff} = \begin{cases} 10 \log_{10} N_k + 13 & \text{for } N_k \geq 1 \\ 5 \left[8 / \sinh^{-1}(1) \right] \cdot \sinh^{-1} \left(N_k^{0.465} \right) & \text{for } -0.324 \leq N_k < 1.0 \\ 0 & \text{for } N_k < -0.324 \end{cases}$$

（±の符号：＋は$N_k > 0$、－は$N_k < 0$の場合）

ここで、N_k : フレネル数

$$N_1 = \frac{2}{\lambda} \left(a + b - r \right)$$
$$N_2 = \frac{2}{\lambda} \left(c + d - r \right)$$

λ : 波長（m）
r : 音源（S）と受音点（P）との距離（m）
a : 音源（S）と仮想障壁の天端（H）との距離（m）
b : 受音点（P）と仮想障壁の天端（H）との距離（m）
c : 音源（S）と仮想障壁の地盤面（G）との距離（m）
d : 受音点（P）と仮想障壁の地盤面（G）との距離（m）

（注）1. 「回折計算の方法」（騒音制御 Vol. 21, No. 3 (1997) pp. 143-147 （社）日本騒音制御工学会）
(3) 予測条件

(a) 予測対象建設機械

予測対象とした建設機械は、騒音を発生する頻度が多い作業及び騒音レベルが大きくなる作業を抽出することとし、表5.3.12に示すとおり設定した。

<table>
<thead>
<tr>
<th>建設作業</th>
<th>予測対象建設機械</th>
</tr>
</thead>
<tbody>
<tr>
<td>杭打ち作業</td>
<td>高周波振動杭打機</td>
</tr>
<tr>
<td></td>
<td>油圧式杭圧入引抜機</td>
</tr>
<tr>
<td>掘削作業</td>
<td>リバースサーキュレーションドリル</td>
</tr>
<tr>
<td></td>
<td>オールケーシング掘削機</td>
</tr>
<tr>
<td></td>
<td>バックホウ</td>
</tr>
<tr>
<td></td>
<td>クラムシェル</td>
</tr>
<tr>
<td>コンクリート打設作業</td>
<td>コンクリートミキサ車</td>
</tr>
<tr>
<td></td>
<td>コンクリートポンプ車</td>
</tr>
<tr>
<td>締め固め作業</td>
<td>振動ローラ</td>
</tr>
<tr>
<td>架設作業</td>
<td>トラッククレーン</td>
</tr>
<tr>
<td>鋼管打ち込み作業</td>
<td>バイブロハンマ</td>
</tr>
<tr>
<td>構造物取り壊し作業</td>
<td>大型プレーカ</td>
</tr>
</tbody>
</table>

(b) 音源パワーレベルの設定

予測対象建設機械の音源パワーレベルの設定結果は、表5.3.13に示すとおりである。

音源パワーレベルの設定については、環境影響評価書（平成14年11月）と同様、建設省土木研究所が調査している表5.3.14に示すA特性音響パワーレベルのうち最大のものを採用することとし、それらの周波数特性は図5.3.10〜5.3.28に示す特性を用いて設定した。

ただし、バックホウ、コンクリートミキサ車、コンクリートポンプ車の騒音については、都島～久宝寺間の建設作業騒音の測定結果を用いた。
表 5.3.13 建設機械別の音源パワーレベル
（単位：デシベル）

<table>
<thead>
<tr>
<th>建 設 機 械</th>
<th>オクターブバンド中心周波数 (Hz)別音圧パワーレベル</th>
</tr>
</thead>
</table>

(注) 1. A特性補正前の値である。
2. クラムシェルは、オールケーシング掘削機の値を用いた。
3. バックホウ、コンクリートミキサ車、コンクリートポンプ車は、現地調査による値である。
4. 音源パワーレベルは、建設省土木研究所が調査している表 5.3.14 に示す A特性補正後のパワーレベルのうち最大のものを採用し、周波数別には図 5.3.10～5.3.28 に示す特性を用いて A特性補正前の値として設定した。

表 5.3.14 建設機械別音響パワーレベル

<table>
<thead>
<tr>
<th>機械名</th>
<th>規 格</th>
<th>騒音対策</th>
<th>音響パワーレベル (デシベル)</th>
<th>備 考</th>
</tr>
</thead>
<tbody>
<tr>
<td>鋼矢板対策打ち込み工法</td>
<td>オーガ併用式</td>
<td>転送工作</td>
<td>97~107</td>
<td>バイブロ併用</td>
</tr>
<tr>
<td></td>
<td>振動工作</td>
<td></td>
<td>102~112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>押入れ工法</td>
<td></td>
<td>103~104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ウォータジェット工法</td>
<td></td>
<td>97~107</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,500 mm</td>
<td></td>
<td>107~112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,000 mm</td>
<td></td>
<td>107~112</td>
<td></td>
</tr>
<tr>
<td>リバースサーキュレーションドリル</td>
<td>3,200 mm</td>
<td></td>
<td>107~112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,000 mm</td>
<td></td>
<td>107~112</td>
<td></td>
</tr>
<tr>
<td>オールケーシング掘削機</td>
<td>リバースサーキュレーションドリル</td>
<td>1,200 mm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,300 mm</td>
<td></td>
<td>112~117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,500 mm</td>
<td></td>
<td>113~118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,000 mm</td>
<td></td>
<td>113~118</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,500 mm</td>
<td>ハンドガイド</td>
<td>93~103</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.5~0.6 t</td>
<td>自走</td>
<td>97~104</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.8~1.1 t</td>
<td></td>
<td>103~106</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1.2~1.4 t</td>
<td></td>
<td>105~110</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.5~2.8 t</td>
<td></td>
<td>106~111</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3~4 t</td>
<td></td>
<td>107~112</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3~4 t</td>
<td></td>
<td>104~109</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6~7 t</td>
<td></td>
<td>112~117</td>
<td></td>
</tr>
<tr>
<td></td>
<td>11t</td>
<td></td>
<td>112~117</td>
<td></td>
</tr>
<tr>
<td>トラッククレーン</td>
<td></td>
<td>機械式</td>
<td>103~107</td>
<td>対策マフラ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>25 t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35~37 t</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>油圧式</td>
<td>20~22 t</td>
<td>100~105</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>35~36 t</td>
<td>100~105</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>45 t</td>
<td>100~105</td>
<td></td>
</tr>
<tr>
<td>大型プレーカ</td>
<td>空圧</td>
<td>200〜400 kg</td>
<td>121~128</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>200〜400 kg</td>
<td>121~128</td>
<td></td>
</tr>
<tr>
<td></td>
<td>油圧</td>
<td>600 kg</td>
<td>119~124</td>
<td></td>
</tr>
<tr>
<td></td>
<td>振動パイルドライバ</td>
<td>22kw</td>
<td>111~116</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>30kw</td>
<td>112~117</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>40kw</td>
<td>113~118</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>60kw</td>
<td>116~121</td>
<td></td>
</tr>
</tbody>
</table>

(注) 下線は、予測に用いた音響パワーレベルを示す。
資料：「建設機械の騒音・振動データブック」（昭和 55 年 1 月、建設省土木研究所機械研究室）
＜高周波振動杭打機＞

高周波振動杭打機の作業騒音は、図 5.3.10 に示すとおりであり、30m地点で72デシベルとなっていることから、この値を用いて音源パワーレベルを逆算して設定した。

周波数特性は、類似作業である図 5.3.11 に示す振動パイルドライバの作業騒音の周波数特性より設定した。

資料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図 5.3.10 高周波振動杭打機の作業騒音

＜油圧式杭圧入引抜機＞

圧入工法の作業騒音は、多少変動するが定常騒音とみなせるものであり、騒音発生の大部分がベースマシンや発動発電機などの補助機械からのもので建込み時にはほとんど騒音が発生していない。

7m地点での作業騒音の周波数特性は、図 5.3.12 に示すとおりであり、予測ではこの特性を用いた。

資料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図 5.3.12 圧入工法の作業騒音の周波数特性
リバースサーキュレーションドリルの作業騒音は、図 5.3.13 に示すとおりであり、掘削中のほぼ定常音である。7m地点での作業音の周波数特性は、図 5.3.14 に示すとおりであり、予測では騒音レベルが大きくなる110kW（発動発電機）使用時の特性を用いた。

资料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図 5.3.13 リバースサーキュレーションドリルの作業騒音
（規格1,500㎜φ、7m地点）

バックホウの作業騒音は、図 5.3.15 に示すとおりであり、騒音源はエンジン音が主となっており、騒音レベルが変動する原因は、車体の旋回によって音源となるエンジンの部分が車体の影になったりするためである。

5m地点での作業騒音の周波数特性は、図 5.3.16 に示すとおりであり、現地調査により把握した。

资料：「建設作業騒音防止の実務」（昭和62年7月、㈱環境公害新聞社）

図 5.3.15 バックホウの作業騒音
＜オールケーシング堀削機＞

オールケーシング堀削機の作業騒音は、図 5.3.17 に示すような変動を示し、ハンマグラブの衝突音が卓越している。

7m地点での作業騒音の周波数特性は、図 5.3.18 に示すとおりであり、予測では騒音レベルが大きくなる2,000 mm φの特性を用いた。

資料：「建設工事に伴う騒音振動対策ハンドブック (改訂版)」（昭和62年6月、(社)日本建設機械化協会）

図 5.3.17 オールケーシング堀削機の作業騒音（規格1,200 mm φ、15m地点）
図 5.3.18 オールケーシング工法の作業騒音の周波数特性
<コンクリートミキサ車>
コンクリートミキサ車の作業騒音は、現地調査を実施することにより把握した。作業騒音は、待機時（かくはん中）、排出時、終了時ふかしに大別でき、終了時のふかし音が最も大きくなる。したがって、予測では終了時ふかしの騒音を対象とすることとし、その時の6m地点での周波数特性は、図5.3.19に示すとおりである。

＜コンクリートポンプ車＞
コンクリートポンプ車の作業騒音は、図5.3.20に示すとおりである。5m地点での作業騒音の周波数特性は、図5.3.21に示すとおりであり、現地調査により把握した。

資料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図5.3.19 コンクリートミキサ車の作業騒音の周波数特性

図5.3.20 コンクリートポンプ車の作業騒音

図5.3.21 コンクリートポンプ車の作業騒音の周波数特性
＜振動ローラ＞

振動ローラの作業騒音は、図5.3.22に示すとおりであり、機械の振動に伴う騒音が加わるため、エンジン騒音より大きくなる。

7m地点での作業騒音の周波数特性は、図5.3.23(1)に示すとおりであり、予測では騒音レベルが大きく報告されている図5.3.23(2)の自走式の特性を用いた。

資料:「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図5.3.22 振動ローラの作業騒音

＜トラッククレーン＞

クローラクレーンの作業騒音は、図5.3.24に示すとおりである。騒音源は、トラッククレーン、クローラクレーンともにエンジン音が主となっており、作業中はほとんど定常音となっている。

7m地点での作業騒音の周波数特性は、図5.3.25に示すとおりであり、予測では騒音レベルが大きくなる油圧式の特性を用いた。

資料:「建設作業騒音防止の実務」（昭和62年7月、㈱環境公害新聞社）

図5.3.23(1) 振動ローラの作業騒音の周波数特性

図5.3.23(2) 振動ローラの作業騒音の周波数特性
資料：「建設作業騒音防止の実務」（昭和62年7月、㈱環境公害新聞社）

図 5.3.24 クローラクレーンの作業騒音

図 5.3.25 トラッククレーンの作業騒音の周波数特性

＜バイブロハンマ＞

バイブロハンマの作業騒音は、図 5.3.26 に示すとおりである。

バイブロハンマの作業騒音の周波数特性は、図 5.3.27 に示すとおりであり、予測では 30kW の特性を用いた。

資料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械化協会）

図 5.3.26 バイブロハンマの作業騒音

図 5.3.27 バイブロハンマの作業騒音の周波数特性
大型ブレーカ

大型ブレーカの作業騒音の周波数特性は、図5.3.28に示すとおりであり、予測では油圧式の特性を用いた。

資料：「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和62年6月、（社）日本建設機械協会）

図5.3.28 大型ブレーカの作業騒音の周波数特性

（c）予測地点

予測地点は、工事区域の周辺地域であり、具体的には工事敷地境界を対象とする。なお、予測対象建設機械について、各作業時の建設機械の稼働位置の想定は、図5.3.29に示すとおりである。建設機械の稼働位置の想定に基づくと、建設機械の稼働位置と工事敷地境界との距離は概ね5〜10m程度となるものと考えられる。

したがって、建設作業騒音の予測は、建設機械の稼働位置から5、10、20m離れた地点の地上1.2m高さを対象とした。
図 5.3.29(1) 建設機械の稼働位置の想定
図 5.3.29(2) 建設機械の稼働位置の想定
＜取り壊し作業＞

図 5.3.29 (3) 建設機械の稼働位置の想定

（4）予測結果

建設機械の稼働に伴う騒音の予測結果は、表 5.3.15 に示すとおりであり、騒音レベルの 90％レンジ上端値（L_{A5}）は、建設機械の稼働位置から 5 m 地点では 77～101 デシベル、10 m 地点では 73～95 デシベル、20 m 地点では 64～89 デシベルとなっている。

表 5.3.15 建設機械の稼働に伴う騒音の予測結果

<table>
<thead>
<tr>
<th>建設機械の稼働位置からの距離</th>
<th>予測対象建設機械</th>
<th>騒音レベルの 90％レンジ上端値 (L_{A5}) (デシベル)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 m</td>
<td>10 m</td>
<td>20 m</td>
</tr>
<tr>
<td>高周波振動杭打機</td>
<td>88</td>
<td>82</td>
</tr>
<tr>
<td>油圧式杭圧入引抜機</td>
<td>83</td>
<td>77</td>
</tr>
<tr>
<td>リバースサーキュレーションドリル</td>
<td>85</td>
<td>79</td>
</tr>
<tr>
<td>バックホウ（超低騒音型）</td>
<td>77</td>
<td>73</td>
</tr>
<tr>
<td>オールケーシング掘削機</td>
<td>96</td>
<td>90</td>
</tr>
<tr>
<td>クラムシェル</td>
<td>96</td>
<td>90</td>
</tr>
<tr>
<td>コンクリートミキサ車</td>
<td>87</td>
<td>81</td>
</tr>
<tr>
<td>コンクリートポンプ車</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>振動ローラ</td>
<td>89</td>
<td>83</td>
</tr>
<tr>
<td>トラッククレーン</td>
<td>86</td>
<td>80</td>
</tr>
<tr>
<td>バイブロハンマ</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>大型ブレーカ</td>
<td>101</td>
<td>95</td>
</tr>
</tbody>
</table>

（注）バックホウ、コンクリートミキサ車、コンクリートポンプ車は、現地調査による値である。
（5）評価及び環境保全対策の検討

建設作業騒音の評価は、①環境への影響を最小限にとどめるよう環境保全について配慮されてい ること、②騒音規制法及び大阪府生活環境の保全等に関する条例に定める規制基準との対比を行う こととした。具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併 せて、建設作業騒音が工事区域の敷地境界線において 85 デシベルを超える大きさでないこととし た。

建設作業騒音の評価及び環境保全対策の検討結果は、表 5.3.16 に示すとおりであり、防音シート を工事敷地境界で地盤面から 1.5～2.5m 高さで設置した場合、工事敷地境界での騒音レベルの 90％ レンジ上端値（La5）は 85 デシベル以下となる。なお、環境保全対策の検討の前提条件とした防音 シートの透過損失は、表 5.3.17 に示すとおりである。

調査対象地域における建設作業については、他の工区と同様、建設機械の稼働位置が工事敷地境 界から 5 m 程度となることも想定されることから、建設機械の稼働位置及び工事区域の周辺地域の 状況等を勘案し、必要に応じて防音シートによる環境保全対策を実施することとする。防音シート の設置に際しては、隙間が生じた場合に目標とする減音効果が得られなくなることから、施工に当 たっては隙間が生じないよう十分な配慮を行うこととする。

さらに、環境への影響を最上限にとどめるよう以下に示す環境保全対策を講じることとする。
① 建設機械は、可能な限り低騒音型を採用する。
② 不要な空ふかしやアイドリングをしない。
以上より、建設作業騒音は周辺環境に著しい影響を及ぼさないものと考えられる。

表 5.3.17 環境保全対策の検討の前提条件とした防音シートの透過損失

<table>
<thead>
<tr>
<th>オクタープ 中心周波数 (Hz)</th>
<th>31.5</th>
<th>63</th>
<th>125</th>
<th>250</th>
<th>500</th>
<th>1 k</th>
<th>2 k</th>
<th>4 k</th>
<th>8 k</th>
</tr>
</thead>
<tbody>
<tr>
<td>透过損失（デシベル）</td>
<td>0</td>
<td>0</td>
<td>8</td>
<td>10</td>
<td>14</td>
<td>16</td>
<td>21</td>
<td>27</td>
<td>27</td>
</tr>
</tbody>
</table>

（注）メーカー資料による設定値（面密度＝1.5kg/m²）
表 5.3.16 建設作業騒音の評価及び環境保全対策の検討結果

<table>
<thead>
<tr>
<th>予測対象建設機械</th>
<th>騒音レベルの 90%レンジ上端値 (LA5) (デシベル)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>防音シート設置なし</td>
</tr>
<tr>
<td></td>
<td>建設機械の稼働位置からの距離</td>
</tr>
<tr>
<td></td>
<td>5 m</td>
</tr>
<tr>
<td>高周波振動杭打機</td>
<td>88</td>
</tr>
<tr>
<td>油圧式杭圧入引抜機</td>
<td>83</td>
</tr>
<tr>
<td>リバースサーキュレーションドリル</td>
<td>85</td>
</tr>
<tr>
<td>バックホウ（超低騒音型）</td>
<td>77</td>
</tr>
<tr>
<td>オールケーシング掘削機</td>
<td>96</td>
</tr>
<tr>
<td>クラムシェル</td>
<td>96</td>
</tr>
<tr>
<td>コンクリートミキサ車</td>
<td>87</td>
</tr>
<tr>
<td>コンクリートポンプ車</td>
<td>89</td>
</tr>
<tr>
<td>振動ローラ</td>
<td>89</td>
</tr>
<tr>
<td>トラッククレーン</td>
<td>86</td>
</tr>
<tr>
<td>大型ブレーカ</td>
<td>101</td>
</tr>
</tbody>
</table>

（注）騒音レベルに網掛け（■）を示している地点は、騒音規制法及び大阪府生活環境の保全等に関する条例に定める規制基準（85 デシベル）を超過していることを示している。

(6) 事業内容の変更に係る検証結果

調査対象地域において、主な工事内容の変更箇所は、図 2.2.2−2.2.3 に示すとおりであり、跨線線路橋が追加となる区域、事業計画路線に関する新線盛土等が削除され腹付盛土が追加となる区域が挙げられる。調査対象地域における主な工事内容の変更は、表 5.3.17 に示すとおりである。

跨線線路橋構築区域については、変更案では事業計画路線に関する跨線線路橋の構築工事が追加となる。跨線線路橋の構築工事の追加により、変更案においてはオールケーシング掘削機等を使用することとなるが、建設機械の稼働位置は工事敷地境界から概ね5～10m程度となるものと思定されることから、防音シートの設置等の環境保全対策を講じることにより工事敷地境界での騒音レベルの 90%レンジ上端値 (LA5) は 85 デシベル以下となるものと考えられる。

腹付盛土構築区域については、事業計画路線東側区域では、現行認可案では事業計画路線に関する新線盛土工事が実施されるが、変更案では、新線盛土工事及び高架構築工事が削除され、鉄道路地拡幅のための腹付盛土工事が実施されることから、コンクリートポンプ車等が使用されないこととなる。したがって、東側区域では、建設作業騒音による影響の程度は、現行認可案より変更案の方が小さくなるものと想定される。
腹付盛土構築区域の事業計画路線西側区域では、現行認可案では工事は実施されないが、変更案では鉄道敷地拡幅のための腹付盛土工事が実施される。腹付盛土工事の実施により、変更案においてはバックホウ等を使用することとなるが、建設機械の稼働位置は工事敷地境界から概ね5〜10m程度となるものと想定されることから、防音シートの設置等の環境保全対策を講じることにより工事敷地境界での騒音レベルの90%レンジ上限値（LA_{50})は85デシベル以下となるものと考えられる。

なお、建設作業騒音については、工事敷地境界での騒音レベルの90%レンジ上限値（LA_{50})は環境影響評価書（平成14年11月）と同等であり、さらに、環境保全対策の内容及び考え方は環境影響評価書（平成14年11月）と同様である。したがって、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。

表5.3.17 調査対象地域における主な工事内容の変更

<table>
<thead>
<tr>
<th>工事箇所</th>
<th>施工内容の変更</th>
<th>主な使用建設機械の変更</th>
</tr>
</thead>
</table>
| 跨線線路橋構築区域 | 変更案では、事業計画路線に関する跨線線路橋の構築工事が追加される。 | 下記の建設機械の使用について、追加となる。

- 地盤改良・土留工
 - 油圧式杭圧入引抜機、トラッククレーン
- 杭基礎工
 - トラッククレーン、コンクリートミキサ車、コンクリートポンプ車、オールケーシング掘削機
- 基礎工
 - バックホウ、ダンプトラック
- 地盤改良・盛土工
 - トラッククレーン、コンクリートミキサ車、コンクリートポンプ車
- 壁面工
 - トラッククレーン、コンクリートミキサ車、コンクリートポンプ車
- 軌道工
 - 橋型クレーン |

| 事業計画路線東側 | 現行認可案では、事業計画路線に関する新線盛土工事となっている。 | 下記の建設機械の使用について、削除となる。

- 基礎工
 - バックホウ、コンクリートポンプ車、コンクリートミキサ車
- 地盤改良・盛土工
 - ダンプトラック、ロードローラ
- 壁面工
 - トラッククレーン、コンクリートポンプ車
- 軌道工 |

| 腹付盛土構築区域 | 現行認可案では、工事は実施されない。 | 下記の建設機械の使用について、追加となる。

- 準備工
 - バックホウ、ダンプトラック
- 盛土工
 - バックホウ、ダンプトラック、振動ローラ
- 軌道敷設工等
 - ダンプトラック、バックホウ、トラック、バラスト締固機 |

| 事業計画路線西側 | 変更案では、軌道敷地拡幅のための腹付盛土工事が追加される。 |

- 腹付盛土構築区域
振動
現況調査
現況調査の概要
調査対象地域における鉄道振動の現況については、環境影響評価書（平成 30年 0月）では東海道本線の東側地域で現地調査を実施しているが、西側地域では実施していない。本調査では、調査対象地域の西側地域の鉄道振動の現況を把握するため現地調査を実施した。
鉄道振動の現況調査の概要は、表に示すとおりである。

表 鉄道振動の現況調査の概要

<table>
<thead>
<tr>
<th>調査項目</th>
<th>鉄道振動</th>
</tr>
</thead>
<tbody>
<tr>
<td>調査事項</td>
<td>振動レベルのピーク値（Lmax）</td>
</tr>
<tr>
<td>調査地域</td>
<td>事業計画路線の沿線地域</td>
</tr>
<tr>
<td>調査地点</td>
<td>0地点（図参照）</td>
</tr>
<tr>
<td>調査日時</td>
<td>平成 30年 0月 00日（金）〜00時</td>
</tr>
<tr>
<td>調査方法</td>
<td>「環境保全上緊急を要する新幹線振動対策について」（昭和 28年 0月 00日、環境庁長官告）による測定方法</td>
</tr>
</tbody>
</table>

調査方法
測定方法
振動の測定は、「環境保全上緊急を要する新幹線鉄道振動対策について」（昭和 28年 0月 00日、環境庁長官告）で示されている方法に準拠して行った。
具体的な測定方法は以下のとおりとした。

測定計器の組合せは、以下に示すとおりであり、日本工業規格に適合した振動レベル計、レベルレコーダ及びデジタルオーディオテープレコーダの組合せで行った。

振動ビックアップは、道路端の地盤上に設置した。
振動レベル計については、振動感覚補正回路は振動レベル（補正加速度レベル）、測定成分は鉛直振動とした。レベルレコーダの動特性は、振動レベルの時定数（V L）に準じ、フルレンジ幅は10デシベル、紙送り速度は1mm/をとした。

測定は、通過列車ごとの振動レベルのピーク値（L max）とし、併せて通過列車ごとの走行速度の測定を行った。走行速度は、調査地点付近の1地点を列車全体が通過する時間をストップウォッチにより測定し、列車長と通過時間に基づいて算定した。

測定時には、運行列車の走行方向、走行速度（通過時間）、列車種別の確認を行った。

データ整理方法
鉄道振動のデータ整理・分析は、運行列車別の鉄道振動の振動レベルのピーク値の算術平均値等を算出することにより行った。

調査結果
鉄道振動の現況調査の結果は表に示すとおりであり、振動レベルのピーク値の上位半数の平均値は8デシベルとなっている。

表 鉄道振動の現況調査の結果

<table>
<thead>
<tr>
<th>調査地点</th>
<th>調査地点位置</th>
<th>振動レベルのピーク値（L max） (デシベル)</th>
<th>線路構造</th>
<th>対象路線</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>全列車の平均値</td>
<td>上位半数の平均値</td>
<td>最大値</td>
</tr>
<tr>
<td>市区</td>
<td>吹田市南吹田四丁目</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

（注）調査地点の測点位置は、近接側軌道中心から10m地点である。
列車の走行に伴う振動

予測・評価の概要

列車の走行に伴う振動の影響の予測・評価は、環境影響評価書（平成 ☂年 ☂月）と同様の手法で行うこととし、予測の概要は表 つつつ 中の予測の概要に示すとおりである。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測項目</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>列車の走行</td>
<td>予測項目</td>
<td>鉄道振動</td>
</tr>
<tr>
<td>予測事項</td>
<td>振動レベルのピーク値（L_{max}）</td>
<td></td>
</tr>
<tr>
<td>予測地点</td>
<td>☂、 ☂、 ☂地点（図 つつつ参照）</td>
<td></td>
</tr>
<tr>
<td>予測時期</td>
<td>事業計画路線完成後の仮想最大時</td>
<td></td>
</tr>
<tr>
<td>予測方法</td>
<td>環境影響評価書（平成 ☂年 ☂月）で適用した類似箇所での実態調査結果に基づく予測モデル及び現況調査結果からの推計式</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
</table>
| 鉄道振動 | ☂ 環境への影響を最小限にとどめるような環境保全について配慮されていること。 | • 周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。
 • 在来鉄道の鉄道振動に係る基準等はないため、振動規制法に定められている道路交通振動の限度のうち最も厳しい基準（шейデシベル）との対比を行う。
 • 鉄道振動の振動レベルのピーク値（L_{max}）がט beyデシベル以下であることとする。 |
| ☂ 事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。 | 鉄道振動の振動レベルのピーク値（L_{max}）について、現行認可案と変更案との比較・検証を行う。 |
今回 予測方法

予測手順

鉄道振動は、その発生・伝播機構が複雑であり、車両、軌道構造、線路構造など表に示す諸要素の影響を受けるため、現在のところ統一的な予測方法が確立されていない。

そこで、鉄道振動の振動レベルのピーク値（L_{max}）は、図に示すとおり、「大阪外環状鉄道（都島→久宝寺）建設事業に係る環境影響評価書」（平成２１年２月、大阪外環状鉄道株式会社）に示されている予測モデル及び現況調査結果からの推計式を用いて予測することとした。

ア 事業計画路線による鉄道振動

事業計画路線については、計画線の線路構造は高架構造であり現況の線路構造と異なるから、環境影響評価書に示されている予測を用いて予測を行った。

イ 関連工区間による鉄道振動

関連工区間については、計画線の線路の位置は現在線から移動するものの、線路構造は現況と同様に高架構造である。そこで、関連工区間については、関連地点における現況調査結果に対して、予測地点から軌道中心までの距離の違いによる差を補正することにより予測を行った。

また、距離の違いによる差については、環境影響評価書に示されている予測モデルの距離減衰項を用いて算出した。

図 予測手順

予測モデル

鉄道振動の予測モデルは、表に示すとおりであり、「大阪外環状鉄道（都島→久宝寺）建設事業に係る環境影響評価書」（平成２１年２月、大阪外環状鉄道株式会社）に示されている予測モデル及び現在調査結果からの推計式を用いることとした。
表 です。鉄道振動レベルを決定付けられると考えられる要素

<table>
<thead>
<tr>
<th>項 目</th>
<th>要 素</th>
</tr>
</thead>
<tbody>
<tr>
<td>発生源</td>
<td>• 線路構造（地平、盛土、高架等）</td>
</tr>
<tr>
<td></td>
<td>• 車両（電車、貨物等）</td>
</tr>
<tr>
<td></td>
<td>• 軌道構造（バスタス、スラブ等）</td>
</tr>
<tr>
<td></td>
<td>• レール（ロング、定尺）</td>
</tr>
<tr>
<td></td>
<td>• 列車速度</td>
</tr>
<tr>
<td>伝搬経路</td>
<td>• 地盤</td>
</tr>
<tr>
<td></td>
<td>• 振動源からの距離</td>
</tr>
<tr>
<td></td>
<td>• 地下埋設物等</td>
</tr>
</tbody>
</table>

表 です。鉄道振動の予測モデルの一覧

<table>
<thead>
<tr>
<th>車両</th>
<th>線路構造等</th>
<th>予測モデル式</th>
<th>データ数</th>
<th>重相関係数</th>
<th>標準誤差</th>
</tr>
</thead>
<tbody>
<tr>
<td>電車</td>
<td>高架</td>
<td>[VL = \frac{10}{10} \log_{10} V - \frac{10}{10} \log_{10} R + \frac{10}{10}]</td>
<td>[\cdots]</td>
<td>[\cdots]</td>
<td>[\cdots]</td>
</tr>
</tbody>
</table>

（注）VL : 振動レベル (デシベル) 、V : 列車速度 (km / h) 、R : 軌道中心からの距離 (m)

関連工事区分

<table>
<thead>
<tr>
<th>車両</th>
<th>線路構造等</th>
<th>予測モデル式</th>
<th>備考</th>
</tr>
</thead>
<tbody>
<tr>
<td>電車</td>
<td>盛土</td>
<td>[VL = VL - \frac{10}{10} \log_{10} R]</td>
<td>距離減衰項は、環境影響評価書に示す関係式（図 など参照）より設定した。</td>
</tr>
<tr>
<td>貨物列車</td>
<td>盛土</td>
<td>[VL = VL - \frac{10}{10} \log_{10} R]</td>
<td>距離減衰項は、環境影響評価書に示す関係式（図 など参照）より設定した。</td>
</tr>
</tbody>
</table>

（注）VL : 現況の鉄道振動（振動レベルピーク値の上位半数算術平均値 (デシベル)）
R : 将来線の軌道中心からの距離 / 現在線の軌道中心からの距離
図[図説]振動レベルと列車速度、軌道中心からの距離の関係
（電車、高架、スラブ軌道、ロングレール）
類似箇所：JR片町線鶴池町一往駅間1箇所、
JR福知山線川西池田一中山寺間1箇所

図[図説]振動レベルと列車速度、軌道中心からの距離の関係
（電車、新幹、バスタロット軌道、ロングレール）
類似箇所：JR片町線河内磐船一津田間1箇所

VL = 12.897 \log(V) - 13.1800 \log(R) + 39.304 \quad n=204

VL = 42.391 \log(V) - 15.4200 \log(R) - 13.000 \quad n=96
図 ①①①① 振動レベルと列車速度、車線中心からの距離の関係
[貨物列車、盛土、バラスト車線、定尺レール]
[城東貨物線での実態調査結果]

ورو①①① 予測条件

ورو①① 予測地点

予測地点は、表 ①①①① 及び図 ①①①① に示すとおり、△△、□□及び△△地点の３地点を設定した。

ورو①① 構造条件及び運行条件

事業計画車線及び関連工事区間の方向別種別運行本数は表 ①①①① 予測地点別の構造条件及び運行条件の一覧は表 ①①①① に示すとおりである。

ورو①① 現況の鉄道振動

現況の鉄道振動は、表 ①①①①に示すとおりであり、現況調査に基づいて、列車種別線路別に鉄道振動の振動レベルのピーク値の上位半数算術平均値を整理した。
表 現況の鉄道振動（振動レベルのピーク値の上位半数算術平均値）

<table>
<thead>
<tr>
<th>路 線 名</th>
<th>方 向</th>
<th>列車種別</th>
<th>振動レベルのピーク値の上位半数算術平均値</th>
<th>線路番号</th>
</tr>
</thead>
<tbody>
<tr>
<td>京 都 行</td>
<td>貨物車</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>貨物車</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>京 都 行</td>
<td>貨物車</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>貨物車</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>特 急 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>特 急 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新快速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>快 速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>快 速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>普 通 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>特 急 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>特 急 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>新快速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>快 速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>快 速 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
<tr>
<td>新大阪行</td>
<td>普 通 (□□□□□□)</td>
<td>❏</td>
<td>❏</td>
<td>❏</td>
</tr>
</tbody>
</table>

注）1. 線路番号は、図に示すとおりである。
2. 梅田貨物線（新大阪行）については、現地調査結果が得られなかったことから、梅田貨物線（京都行）の予測結果及び図の（□）に基づき、下記の予測モデルを用いて推計した。

\[
V \cdot L = V \cdot L \cdot \log_{10} V \cdot L = V \cdot L \cdot \log_{10} R \cdot L
\]

ここで、
\[V \cdot L \cdot \log_{10} V \cdot L : 梅田貨物線（京都行）の振動レベルのピーク値\]
\[V \cdot L : 梅田貨物線（新大阪行）の走行速度 / 梅田貨物線（京都行）の走行速度\]
\[R \cdot L : 梅田貨物線（新大阪行）の軌道中心までの距離 / 梅田貨物線（京都行）の軌道中心までの距離\]

3. 現況調査の調査地点は、現在線の西側であり、近接側軌道中心から□□□□m地点である。
予測結果

事業計画路線及び関連工事区間による鉄道振動の予測結果は、表に示すとおりである。

表 事業計画路線及び関連工事区間による鉄道振動の予測結果

<table>
<thead>
<tr>
<th>予測地点</th>
<th>線路構造</th>
<th>路線</th>
<th>方向</th>
<th>走行速度（km/h）</th>
<th>振動レベルのピーク値（デシベル）</th>
<th>計画線の近接側軌道軸心からの距離</th>
</tr>
</thead>
<tbody>
<tr>
<td>高架</td>
<td>高架</td>
<td>事業計画路線</td>
<td>都島行</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高架</td>
<td>事業計画路線</td>
<td>東海道貨物線</td>
<td>京都行</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>高架</td>
<td>事業計画路線</td>
<td>東海道本線</td>
<td>京都行</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>新大阪行</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

（注）1. 東海道本線については、特急（-）、新快速（-）、快速（-）、普通（-）の6種類の列車が走行していることから、列車種別ごとに含む予測を行った上で、最大値を示している。

2. 予測地点の0m地点においては、最接近の住居立地位置（近接側軌道軸心から0m地点）における値を示している。

3. 鉄道振動の予測に際して、前提としての環境保全対策は、以下に示すとおりである。

- 線路は、ロングレールを敷設する。
- 高架橋の軌道構造には、防振スラブを用いる。
評 価

鉄道振動の評価は、環境への影響を最小限にとどめるよう環境保全について配慮されていることとしている。具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併せて、振動規制法に定められている道路交通振動の限度のうち最も厳しい基準（デシベル）との対比を行うこととしているので、鉄道振動の振動レベルのピーク値（Lmax）がデシベル以下であることとした。

・地点・地点の計画線の近接側軌道中心から地点及び地点の計画線の近接側軌道中心から地点（最近接の住居地周）における事業計画線及び関連工事区間による鉄道振動について、振動レベルのピーク値（Lmax）は、最大でデシベルとなっており、デシベル以下となっている。

また、鉄道振動についても、以下の環境保全対策を実施する。

・線路は、緩やかなカーブや分岐部を除いてロングレールを敷設する。
・高架橋の軌道構造には、本予測の前提条件として防振スラブと比較して振動低減効果が同等以上とされる「弹性マクラギ直結軌道」を採用することにより、鉄道振動のさらなる低減に努める。
・関連工事区間では、事業計画線の新設に伴い、既設線の軌道を移設することとなるが、軌道から住居等までの距離を極力確保するよう軌道の移設位置について配慮を行う。

なお、地点については、事業計画線の沿線には側道が整備される計画であり、沿線に近接した住居においても鉄道振動の振動レベルのピーク値（Lmax）がデシベル以下となると予測される。また、地点・地点・地点については、近接側軌道が有効に移設される区間において、近接側軌道中心から以内の範囲の住居等は、東側区域には立地していないが、西側区域には1棟が立地している。なお、西側区域に立地している住居においては、軌道の移設幅が小さいため、鉄道振動の予測結果が現状線と計画線で同等となっている。

以上より、鉄道振動は周辺環境に著しい影響を及ぼさないものと考えられる。

事業内容の変更に係る検証結果

現行認可案と変更案の鉄道振動の比較は、表に示すとおりである。

地点については、線路構造が高架構造から変更となることにより、鉄道振動の振動レベルのピーク値（Lmax）の最大値は、変更案の計画線の近接側軌道中心から地点において、現行認可案がデシベル、変更案がデシベルとなり、3デシベル増加しているが、いずれにおいても振動規制法に定められている道路交通振動の限度のうち最も厳しい基準（デシベル）
以下となっている。

・・地点については、近接側軌道中心が民有地方向に・m移設されることから、鉄道振動の振動レベルのピーク値（Lmax）の最大値は、変更案の計画線の近接側軌道中心から・m地点において、現行認可案が・デシベル、変更案が・デシベルとなり、1デシベル増加しているが、いずれにおいても振動規制法に定められている道路交通振動の限度のうち最も厳しい基準（・デシベル）以下となっている。

・・地点については、鉄道振動の振動レベルのピーク値（Lmax）の最大値は、変更案の計画線の近接側軌道中心から・m地点（最近接の住居立地位置）において、現行認可案及び変更案ともに・デシベルとなり、いずれも振動規制法に定められている道路交通振動の限度のうち最も厳しい基準（・デシベル）以下となっている。

なお、環境保全対策に関する考え方は、環境影響評価書（平成・年・月）と同様の考え方としている。さらに、高架橋の軌道構造について、本予測の前提条件とした防振スラブと比較して振動低減効果が同等以上とされる「弾性マクラギ直結軌道」を採用することにより、鉄道振動のさらなる低減に努めることとしている。また、関連工事区間では、事業計画路線の新設に伴い、既設線の軌道を移設することとなるが、軌道から住居等までの距離を可能な限り確保するよう軌道の移設位置について配慮するとともに、保守・管理を定期的に行い、振動の軽減に努めることとしている。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
表 現行認可案と変更案の鉄道振動の比較

<table>
<thead>
<tr>
<th>予測地点</th>
<th></th>
<th>路線</th>
<th>振 動 レ ベ ル の ピーク値 （デシベル）</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>現行認可案</td>
<td>変更案</td>
<td>□ - □</td>
<td>道路交通振動の限度との対比</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>計画線</td>
<td>計画線</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>事業計画路線</td>
<td></td>
<td>□□□□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td>関連工事及び開削区間</td>
<td>事業計画路線</td>
<td>□□□□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td>関連工事及び開削区間</td>
<td>事業計画路線</td>
<td>□□□□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□m</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
<td>□□□□</td>
</tr>
</tbody>
</table>

注：1. 鉄道振動のピーク値は、事業計画路線、関連工事及び開削区間の各々の最大値を示している。
2. 現行認可案における軌道位置について、上記□□□mまたは□□□m地点の位置は以下に示すとおりである。
 □□□m地点：近接側軌道中心から□□□m地点
 □□□m地点：近接側軌道中心から□□□m地点
 □□□m地点：近接側軌道中心から□□□m地点
3. 「□□□」は、道路交通の影響であることを示す。
4. 道路交通振動の限度との対比は、道路交通振動の限度のうち最も厳しい基準（□□□デシベル）との対比を行うこととした。
5. 鉄道振動の予測に際して、前提とした環境保全対策は、以下に示すとおりである。
 □□□ 高架橋の軌道構造には、防振スラブを用いる。
建設機械の稼働に伴う振動

予測・評価の概要

建設機械の稼働に伴う振動の影響の予測・評価は、環境影響評価書（平成 40年 08月）と同様の手法で行うこととし、予測の概要は表のように、評価の概要は表のように示すとおりである。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設機械の稼働</td>
<td>予測項目</td>
</tr>
<tr>
<td></td>
<td>予測事項</td>
</tr>
<tr>
<td></td>
<td>予測地点</td>
</tr>
<tr>
<td></td>
<td>予測時期</td>
</tr>
<tr>
<td></td>
<td>予測方法</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>建設作業振動</td>
<td>環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
</tr>
<tr>
<td>建設作業振動</td>
<td>振動規制法及び大阪府生活環境の保全等に関する条例に定める規制基準との対比</td>
<td>建設作業振動が工事区域の敷地境界線において 10デシベルを超える大きさでないこととする。</td>
</tr>
<tr>
<td>建設作業振動</td>
<td>事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td>建設作業振動の振動レベルの 1%レンジ上端値（L10）との対比を行う。</td>
</tr>
<tr>
<td>建設作業振動</td>
<td>主な工事内容及び工事敷地境界での振動レベルの 1%レンジ上端値（L10）について、現行認可案と変更案との比較・検証を行う。</td>
<td></td>
</tr>
</tbody>
</table>
予測方法

予測手順

建設作業振動の予測の手順は、図 に示すとおりであり、工事計画に基づいて、予測対象時期に応じた建設作業を抽出し、各建設機械の発生源振動レベル及びその位置などの予測の前提条件を設定した上で、予測モデルを用いて建設作業時の振動レベルを予測した。

図 建設作業振動の予測手順

予測モデル

建設機械から伝搬する振動の予測モデル は、式 に示すとおりである。

\[VL_r = VL_0 - 10 \log_{10} \left(\frac{r}{r_0} \right) - \alpha \] ここで、VL_r ：振動源から r m離れた地点の振動レベル（デシベル）
VL_0 ：振動源から r_0 m離れた地点の振動レベル（デシベル）
r ：振動源から受振点までの距離（m）
r_0 ：振動源から基準点までの距離（m）
\[\alpha \] ：地盤の減衰定数
（の値は0.01 0.04の範囲とされており、ここでは0.01を採用した）

（注）「建設作業振動対策マニュアル」（平成6年4月、社日本建設機械化協会）
予測条件

予測対象建設機械

予測対象とした建設機械は、振動を発生する頻度が多い作業及び振動レベルが大きくなる作業を抽出することとし、表に示すとおり設定した。

<table>
<thead>
<tr>
<th>建設作業</th>
<th>予測対象建設機械</th>
</tr>
</thead>
</table>
| 杭打ち作業 | 高周波振動杭打機
油圧式杭圧入引抜機 |
| 掘削作業 | リバースサーキュレーションドリル
オールケーシング掘削機
バックホウ
クラムシェル |
| 締め固め作業 | 振動ローラ（ロードローラで代替の場合あり） |
| 鋼管打ち込み作業 | パイプロハンマ |
| 構造物取り壊し作業 | 大型ブレーカ |

基準点における振動レベル

予測対象建設機械の基準点における振動レベルの設定結果は、表に示すとおりである。

<table>
<thead>
<tr>
<th>建設機械</th>
<th>r_0 (m)</th>
<th>振動源からr_0m離れた地点の振動レベル（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>高周波振動杭打機</td>
<td></td>
<td></td>
</tr>
<tr>
<td>油圧式杭圧入引抜機</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>リバースサーキュレーションドリル</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>バックホウ</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>オールケーシング掘削機</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>クラムシェル</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>振動ローラ</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ロードローラ</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>パイプロハンマ</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>大型ブレーカ</td>
<td>7</td>
<td></td>
</tr>
</tbody>
</table>

（注）1. 「建設工事に伴う騒音振動対策ハンドブック（改訂版）」（昭和41年6月、社日本建設機械化協会）
2. 「建設作業振動対策マニュアル」（平成6年4月、社日本建設機械化協会）
3. 「建設機械の騒音・振動データブック」（昭和41年1月、建設省土木研究所機械研修室）
4. クラムシェルは、オールケーシング掘削機の値を用いた。
5. バックホウは、現地調査による値である。
6. 振動レベルとは、振動レベルの1/3レンジ上段値を示す。
予測地点

予測地点は、工事区域の周辺地域であり、具体的には工事敷地境界を対象とする。なお、予測対象建設機械について、各作業時の建設機械の稼働位置の想定は、建設作業騒音と同様であり、図に示すとおりである。建設機械の稼働位置の想定に基づくと、建設機械の稼働位置と工事敷地境界との距離は概ね5〜10m程度となるものと考えられる。

したがって、建設作業振動の予測は、建設機械の稼働位置から5、10m離れた地点の地盤上を対象とした。

予測結果

建設機械の稼働に伴う振動の予測結果は、表に示すとおりであり、振動レベルの63%レンジ上端値（L10）は、建設機械の稼働位置から5m地点では3〜4デシベル、10m地点では3〜4デシベル、20m地点では4〜5デシベルとなっている。

<table>
<thead>
<tr>
<th>予測対象建設機械</th>
<th>振動レベルの63%レンジ上端値（L10）（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>建設機械の稼働位置からの距離</td>
</tr>
<tr>
<td></td>
<td>5m</td>
</tr>
<tr>
<td>高周波振動杭打機</td>
<td>-</td>
</tr>
<tr>
<td>油圧式杭押入抜機</td>
<td>-</td>
</tr>
<tr>
<td>リバースサーキュレーションドルト専用機</td>
<td>3〜4</td>
</tr>
<tr>
<td>パックホウ</td>
<td>-</td>
</tr>
<tr>
<td>オールケーシング掘削機</td>
<td>3〜4</td>
</tr>
<tr>
<td>クラムシェル</td>
<td>3〜4</td>
</tr>
<tr>
<td>振動ローラ</td>
<td>3〜4</td>
</tr>
<tr>
<td>ロードローラ</td>
<td>-</td>
</tr>
<tr>
<td>バイブロハンマ</td>
<td>-</td>
</tr>
<tr>
<td>大型ブレーカ</td>
<td>3〜4</td>
</tr>
</tbody>
</table>

（注）パックホウは、現地調査による値である。
評価及び環境保全対策の検討

建設作業振動の評価は、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②振動規制法及び大阪府生活環境の保全等に関する条例に定める規制基準との対比を行うこととした。具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併せて、建設作業振動が工事区域の敷地境界線において①デシベルを超える大きさでないこととした。

工事敷地境界での振動レベルの①%レンジ上端値（L10）が②デシベルを超過することが想定される建設機械は、振動ローラ、大型ブレーカであり、これらの建設機械を使用する建設作業については、以下に示す環境保全対策を実施する。

・振動ローラ

振動ローラについては、既存文献によると機械の大きさにも関係してかなりの幅を持った振動レベルを示していること、本建設作業における振動ローラの使用は、盛土部においての転圧（締め固め）作業時であることから盛土自体での減衰が期待できること等から常に問題が生じるとは考えられないとが、工事の実施段階において問題が予想される場合は、ロードローラの使用に変更するなどの対応を図るものとする。

・大型ブレーカ

大型ブレーカについては、取り壊し対象物の硬さ等により振動レベルの大きさに関係してくる。既存文献では③デシベル程度の範囲で示されており、最大の場合で敷地境界で基準を4デシベル上回ることとなる。したがって、石積やコンクリート構造物を取り壊す場合には、振動の影響に注意しなから、場合によっては静的破砕工法の採用により、振動の発生を小さくするなどの配慮を行う。

なお、バックホウについては、現地調査によると大きな振動は発生していなかったが、硬い地盤を掘削する際には、さらに大きな振動が発生すると考えられる。したがって、硬い地盤などを掘削する場合は、バケットを落下させてその衝撃力によって爪のくい込みを図ることを避けることにより、振動の低減を図るものとする。

また、環境保全対策として、建設機械は可能な限り低振動型を採用することとする。

以上より、建設作業振動は周辺環境に著しい影響を及ぼさないものと考えられる。
事業内容の変更に係る検証結果

調査対象地域において、主な工事内容の変更箇所は、図 11 に示すとおりであり、跨線線路橋が追加となる区域、事業計画路線に関する新線盛土等が削除され腹付盛土が追加となる区域が挙げられる。調査対象地域における主な工事内容の変更は、表 11 に示すとおりである。

跨線線路橋構築区域については、変更案では事業計画路線に関する跨線線路橋の構築工事が追加となる。跨線線路橋の構築工事の追加により、変更案においては、オールシェーン挿削機等を使用することとなる。腹付盛土構築区域については、事業計画路線東側区域では、現行認可案では事業計画路線に関する新線盛土工事が実施されるが、変更案では、新線盛土工事及び高架構築工事が削除され、鉄道敷地拡幅のための腹付盛土工事が実施されることから、コンクリートポンプ車等が使用されないこととなる。事業計画路線西側区域については、現行認可案では工事は実施されないが、変更案では鉄道敷地拡幅のための腹付盛土工事が実施される。

跨線線路橋構築区域及び腹付盛土構築区域の事業計画路線東側区域については、建設作業振動が比較的大きい振動ローラ、大型ブレーカについては、現行認可案と同様に使用される。したがって、建設作業振動による影響の程度は、現行認可案と変更案は概ね同等であると考えられる。腹付盛土構築区域の事業計画路線西側区域については、腹付盛土工事の実施により、変更案では新たに建設機械が稼働することとなるが、建設機械の稼働位置は工事敷地境界から概ね 5 〜 10m 程度となるものと想定され、また、建設機械の稼働に当たっては前述の環境保全対策を講じることにより工事敷地境界での振動レベルの 98%レンジ上端値（L10）は 55 デシベル以下となるものと考えられる。したがって、建設作業振動による影響の程度は、現行認可案と変更案は概ね同等であると考えられる。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
<table>
<thead>
<tr>
<th>工事箇所</th>
<th>施工内容の変更</th>
<th>主な使用建設機械の変更</th>
</tr>
</thead>
</table>
| 跨越線路橋構築区域 | • 変更案では、事業計画路線に関する跨越線路橋の構築工事が追加される。 | • 下記の建設機械の使用について、追加となる。
 ◦地盤改良・土留工 ◦油圧式杭圧入引抜機、トラッククレーン ◦杭基礎工 ◦トラッククレーン、コンクリートミキサ車、コンクリートポンプ車、オールケーシング掘削機 ◦掘削工 ◦バックホウ、ダンプトラック ◦軸体工 ◦トラッククレーン、コンクリートミキサ車、コンクリートポンプ車 ◦架設工 ◦トラッククレーン、コンクリートポンプ車 ◦軌道工 ◦門型クレーン |
| 腹付盛土構築区域 | • 現行認可案では、事業計画路線に関する新築盛土工事を行っている。
 • 変更案では、関連工事区間に関する腹付盛土工事となる。
 • 以上より、変更案では、基礎工、地盤改良・盛土工、壁面工が削除となる。 | • 下記の建設機械の使用について、削除となる。
 ◦基礎工 ◦バックホウ、コンクリートポンプ車、コンクリートミキサ車 ◦地盤改良・盛土工 ◦ダンプトラック、ロードローラ ◦架設工 ◦トラッククレーン、コンクリートポンプ車、コンクリートミキサ車 ◦警備工 ◦ダンプトラック、コンクリートポンプ車、コンクリートミキサ車 |
| 事業計画路線東側 | • 現行認可案では、工事は実施されない。
 • 変更案では、軌道敷地拡幅のための腹付盛土工事が追加される。 | • 下記の建設機械の使用について、追加となる。
 ◦準備工 ◦バックホウ、ダンプトラック ◦盛土工 ◦バックホウ、ダンプトラック、振動ローラ ◦軌道敷設工 ◦ダンプトラック、バックホウ、トラック、バラスト綴固機 |
5.5 低周波音

5.5.1 列車の走行に伴う低周波音

(1) 予測・評価の概要

列車の走行に伴う低周波音の影響の予測・評価は、環境影響評価書（平成14年11月）と同様の手法で行うこととし、予測の概要は表5.5.1、評価の概要は表5.5.2に示すとおりである。

表5.5.1 低周波音に関する予測の概要

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>列車の走行</td>
<td>列車の走行に伴う低周波音</td>
</tr>
<tr>
<td>予測項目</td>
<td>平坦特性音圧レベルの最大値（Lmax）</td>
</tr>
<tr>
<td>予測事項</td>
<td>G特性音圧レベルの最大値（Lmax）</td>
</tr>
<tr>
<td>予測地点</td>
<td>№②、№⑨、№⑩地点（図5.1.1参照）</td>
</tr>
<tr>
<td>予測時期</td>
<td>事業計画路線完成後の供用最大時</td>
</tr>
<tr>
<td>予測方法</td>
<td>環境影響評価書（平成14年11月）で適用した現地調査結果からの推計による方法</td>
</tr>
</tbody>
</table>

表5.5.2 低周波音に関する評価の概要

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>列車の走行に伴う低周波音</td>
<td>1. 環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2. 大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. 事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>①「低周波音の評価について」に示されている圧迫感が生じる閾値</td>
<td></td>
</tr>
<tr>
<td></td>
<td>②「低周波音の測定方法に関するマニュアル」（平成12年10月、環境庁大気保全課）に示されている建具がたたき閾値</td>
<td></td>
</tr>
<tr>
<td></td>
<td>③ISO7196に示されている低周波音を感じる値</td>
<td></td>
</tr>
<tr>
<td></td>
<td>低周波音の音圧レベルの最大値について、現行認可案と変更案との比較・検証を行う。</td>
<td></td>
</tr>
</tbody>
</table>
（2）予測方法

低周波音の予測の手順は図 5.5.1 に示すとおりであり、事業計画をもとに、低周波音の発生源を
抽出し、現地調査結果から推計を行った。

![図 5.5.1 予測手順](image)

（3）予測条件

(a) 予測地点
予測地点は、№②、№⑨及び№⑩地点の 3 地点を設定した。

(b) 類似箇所における現地調査結果

本予測では、類似箇所における現地調査結果として、「大阪都市計画都市高速鉄道西大阪延伸線
に係る環境影響評価書」（平成 14 年 11 月、大阪市）に示されている阪神西大阪線の高架構造（コ
ンクリートラーメン橋）及び、橋梁（トラス橋）における低周波音の現地調査結果を用いること
とした。なお、阪神西大阪線の上記現地調査箇所は、線路構造がコンクリートラーメン橋及びトラ
ス橋、走行速度が 69～78km／h となっている。一方、事業計画路線における跨線路路橋は、線路構
造がコンクリートラーメン橋及びコンクリート桁式橋、走行速度が 60km／h、西吹田駅（仮称）周
辺がコンクリートラーメン橋、走行速度が 56km／h となっている。阪神西大阪線の上記現地調査箇
所については、構造条件・運行条件・車両条件が事業計画路線における跨線路路橋と類似している
ことから、列車の走行に伴う低周波音も同程度となるものと考えられる。

現地調査地点及び現地調査結果は、図 5.5.2 及び表 5.5.3～5.5.4 に示すとおりであり、平坦特
性音圧レベルの最大値（L_max）が高架構造で 84 デシベル、橋梁で 87 デシベル、G 特性音圧レベルの
最大値（L_Gmax）が高架構造で 81 デシベル、橋梁で 86 デシベルとなっている。
表 5.5.3 低周波音の現地調査結果

<table>
<thead>
<tr>
<th>線路構造</th>
<th>音圧レベルの最大値（デシベル）</th>
<th>平坦特性 (L_{max})</th>
<th>G特性 (L_{Gmax})</th>
</tr>
</thead>
<tbody>
<tr>
<td>高架構造</td>
<td></td>
<td>84</td>
<td>81</td>
</tr>
<tr>
<td>橋 梁</td>
<td></td>
<td>87</td>
<td>86</td>
</tr>
</tbody>
</table>

(注) 1. 表中の値は測定を行った列車の平均値を示す。
2. 調査地点は、高架構造部が近接側軌道中心から12.5m、橋梁部が近接側軌道中心から10m及び11mである。
資料：「大阪都市計画都市高速鉄道西大阪延伸線に係る環境影響評価書」（平成14年11月、大阪市）
表 5.5.4 低周波音の周波数帯域別の音圧レベルの現地調査結果

（単位：デシベル）

<table>
<thead>
<tr>
<th>線路構造</th>
<th>高架構造</th>
<th>橋梁</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/3オクターブバンド中心周波帯域別の平坦特性音圧レベルの最大値（L_max）</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.125 Hz</td>
<td>73</td>
<td>80</td>
</tr>
<tr>
<td>1.25 Hz</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>1.6 Hz</td>
<td>71</td>
<td>78</td>
</tr>
<tr>
<td>2 Hz</td>
<td>71</td>
<td>77</td>
</tr>
<tr>
<td>2.5 Hz</td>
<td>71</td>
<td>75</td>
</tr>
<tr>
<td>3.15 Hz</td>
<td>71</td>
<td>74</td>
</tr>
<tr>
<td>4 Hz</td>
<td>67</td>
<td>72</td>
</tr>
<tr>
<td>5 Hz</td>
<td>65</td>
<td>73</td>
</tr>
<tr>
<td>6.3 Hz</td>
<td>69</td>
<td>76</td>
</tr>
<tr>
<td>8 Hz</td>
<td>71</td>
<td>73</td>
</tr>
<tr>
<td>10 Hz</td>
<td>66</td>
<td>77</td>
</tr>
<tr>
<td>12.5 Hz</td>
<td>70</td>
<td>74</td>
</tr>
<tr>
<td>16 Hz</td>
<td>70</td>
<td>76</td>
</tr>
<tr>
<td>20 Hz</td>
<td>76</td>
<td>77</td>
</tr>
<tr>
<td>25 Hz</td>
<td>77</td>
<td>74</td>
</tr>
<tr>
<td>31.5 Hz</td>
<td>76</td>
<td>78</td>
</tr>
<tr>
<td>40 Hz</td>
<td>63</td>
<td></td>
</tr>
<tr>
<td>50 Hz</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>63 Hz</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>80 Hz</td>
<td>80</td>
<td></td>
</tr>
</tbody>
</table>

（注）1. 表中の値は、調査地点ごとに、測定を行った列車のうち、風の影響等が少ないと考えられる5列車を抽出し、分析を行った結果を示す。
2. 調査地点は、高架構造部が近接軌道中心から12.5m、橋梁部が近接軌道中心から10m及び11mである。
資料：「大阪都市計画都市高速鉄道西大阪延伸線に係る環境影響評価書」（平成14年11月、大阪市）

(4) 予測結果

事業計画路線における列車の走行に伴う低周波音の予測結果は、表5.5.5及び図5.5.3に示すとおりであり、平坦特性音圧レベルの最大値（L_max）は84～87デシベル、G特性音圧レベルの最大値（L_Gmax）は81～86デシベルとなる。

表 5.5.5 低周波音の予測結果

（単位：デシベル）

<table>
<thead>
<tr>
<th>線路構造</th>
<th>走行列車</th>
<th>音圧レベルの最大値（デシベル）</th>
</tr>
</thead>
<tbody>
<tr>
<td>跨線線路橋</td>
<td>電車</td>
<td>平坦特性（L_max）</td>
</tr>
<tr>
<td></td>
<td></td>
<td>84～87</td>
</tr>
</tbody>
</table>

図 5.5.3 低周波音の周波数帯域別の音圧レベルの予測結果
（5）評価及び環境保全対策の検討

低周波音の評価は、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないことに基づいて行うこととした。具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併せて、既往文献に示されている閾値との対比を行うことにより、低周波音が周辺環境に及ぼす影響について評価を行った。

平坦特性音圧レベルの最大値（L_{max}）について、時田保夫「低周波音の評価について」（日本音響学会誌 Vol.41 №11 1985年）に示されている圧迫感が生じる閾値（以下「圧迫感閾値」という）の比較は、図5.5.4に示すとおりであり、40Hzでは76～77デシベルとなり圧迫感閾値（75デシベル）をわずかに上回っているものの、他の周波数帯においては圧迫感閾値を下回っている。

また、「低周波音の測定方法に関するマニュアル」（平成12年、環境庁大気保全局）に示されている建具ががたつき始めると言われている建具のがたつき閾値の比較は、図5.5.5に示すとおりであり、5Hzでは67～73デシベル、6.3Hzでは65～72デシベル、8Hzでは69～78デシベル、10Hzでは71～76デシベルとなり、一部の周波数帯で建具のがたつき閾値を上回ることも考えられるが、大部分の周波数帯で建具のがたつき閾値を下回っている。

G特性音圧レベルの最大値（L_{G_{max}}）については、ISO-7196では「G特性音圧レベルで平均の人が圧迫感を感じる音圧レベルは约100デシベルを超えると超低周波音を感じる」とされているが、これを下回っている。

また、跨線路路橋については、環境への影響を最小限にとどめるよう支柱の設置位置を勘案して可能な範囲で刚性の高いラーメン高架構造を採用する、西吹田駅（仮称）周辺については剛性の高いラーメン高架構造を採用する等、低周波音による影響を軽減する配慮を行っている。

以上より、列車の走行に伴う低周波音は、周辺環境に著しい影響を及ぼさないものと考えられる。
(6) 事業内容の変更に係る検証結果

現行認可案と変更案の低周波音の比較について、列車の走行に伴う低周波音は、現行認可案で音圧レベルの最大値（L_{max}）が 97 デシベル、G特性音圧レベルの最大値（L_{Gmax}）が 84 デシベル、変更案では、音圧レベルの最大値（L_{max}）が 84〜87 デシベル、G特性音圧レベルの最大値（L_{Gmax}）が 81〜86 デシベルとなっており、概ね同程度である。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
5.6 土壌汚染

5.6.1 土地の改変等に伴う土壌汚染

(1) 予測・評価の概要

土地の改変等に伴う土壌汚染の影響の予測・評価は、環境影響評価書（平成14年11月）と同様の手法で行うこととし、予測の概要は表5.6.1、評価の概要は表5.6.2に示すとおりである。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>土地の改変等</td>
<td>予測項目：土壌汚染 予測事項：建設工事の実施が土壌汚染に及ぼす影響 予測地点：吹田市域の高架構造物の基礎杭建設予定地 予測時期：吹田市域の高架構造物の基礎杭建設の工事中 予測方法：環境影響評価書（平成14年11月）で適用した地下水・土壌汚染拡散防止対策工法及び工事中の発生土の処理方法の検討による推定</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>土壌汚染</td>
<td>①環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
</tr>
<tr>
<td></td>
<td>②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと。</td>
<td>土壌汚染が事業計画路線の周辺地域に拡散しないこととする。</td>
</tr>
<tr>
<td></td>
<td>③土壌汚染対策法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するとともに、農用地の土壌の汚染防止等に関する法律に定める基準に該当しないものであること。</td>
<td>土壌汚染対策法及びその他の該当する法律に定められている規制基準との比較・検討を行う。</td>
</tr>
<tr>
<td></td>
<td>④事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td>地下水・土壌汚染拡散防止対策工法について、現行認可案と変更案との比較・検証を行う。</td>
</tr>
</tbody>
</table>
(2) 予測結果

(a) 地下水・土壌汚染拡散防止対策工法の検討

地下水・土壌汚染拡散防止対策工法についての検討内容は、表 5.2.5 に示すとおりであり、地盤改良工法案（セメント系固化体）でケーシングを埋設した場合を採用することとすることから、土壌汚染が周辺に拡散することはないものと考える。

(b) 発生土の処理方法

地盤の掘削による発生土については、土壌汚染の測定を実施し、土壌汚染が確認された場合には、処理業者に委託し、熱処理分解等により適切に処理することとすることから、土壌汚染が周辺に拡散することはないものと考える。

(3) 評価

土地の改変等に伴う土壌汚染の評価は、①環境への影響を最小限にとどめるよう環境保全について配慮されていること、②環境基準並びに環境基本計画、大阪府環境総合計画等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと、③土壌汚染対策法及び大阪府生活環境の保全等に関する条例に定める規制基準に適合するにまた、農用地の土壌の汚染防止等に関する法律に定める基準に該当しないものであることに基づいて行うこととした。具体的には、土壌汚染が事業計画路線の周辺地域に拡散しないこととした。

吹田市域における高架構造物の基礎杭の工事には、適切な地下水・土壌汚染拡散防止対策工法を採用し、また、地盤の掘削による発生土に土壌汚染が確認された場合には、処理業者に委託し、適切に処理を行うことから、土壌汚染が周辺に拡散することはないものと考える。

また、土壌汚染が確認されている地域での工事の実施に当たっては、環境への影響を最小限にとどめるため、以下に示す環境保全対策を講じることとする。

| ① 駅舎及び高架部の基礎杭の工事においては、地盤改良工法（セメント系固化体、ケーシング埋設し）を採用することにより土壌汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。
 | ② 地盤の掘削による発生土については土壌汚染調査を行い、汚染が確認された場合は処理業者に委託し、熱処理分解等により適切に処理する。

以上より、土地の改変等に伴う土壌汚染は周辺環境に著しい影響を及ぼさないものと考えられる。
(4) 事業内容の変更に係る検証結果

環境影響評価書（平成14年11月）においては、地下水・土壌汚染拡散防止対策工法の採用等により土地の変更等は周辺地下水に著しい影響を及ぼさないものとしているが、事業内容の変更後についても同様の考え方となっている。以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。
日照阻害

施設の存在に伴う日照阻害

予測・評価の概要

施設の存在に伴う日照阻害の影響の予測・評価は、環境影響評価書（平成 〇〇年 〇〇月）と同様の手法で行うこととし、予測の概要は表 〇〇〇〇 評価の概要は表 〇〇〇〇に示すとおりである。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設の存在</td>
<td>予測項目</td>
</tr>
<tr>
<td></td>
<td>予測事項</td>
</tr>
<tr>
<td></td>
<td>予測地点</td>
</tr>
<tr>
<td></td>
<td>予測時期</td>
</tr>
<tr>
<td></td>
<td>予測方法</td>
</tr>
</tbody>
</table>

日照阻害に関する予測の概要

予測項目	評価の手法	概要
日照阻害	□ 環境への影響を最小限にとどめるよう環境保全について配慮されていること。	• 周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。
	◇事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。	• 2階高さにおける4時間日影長さ及び5時間日影長さについて、現行認可案と変更案との比較・検証を行う。
予測方法
日照の予測は、高架構造物による日影長さを時刻ごとに幾何光学的に求めた。
高架構造物による日影長さは、太陽の高度・方位及び高架の高さ・方位等から次式を用いて計算した。なお、予測に当たっては、真太陽時を使用した。太陽の高度・方位及び日影の関係は、高架鉄道を例として図に示している。

【基本計算式】
< 太陽高度を求める式 >
\[
\theta = \theta_t \cdot \sin \phi + \theta_0 \cdot \cos \phi \cdot \cos t
\]
< 太陽の方位を求める式 >
\[
\phi = \frac{\Theta - \Theta_0}{\theta_0 \cdot \cos \phi}
\]
< 影の絶対長さを求める式 >
\[
L = H \cdot \theta
\]
< 高架構造物による影の垂直長さを求める式 >
\[
\ell = H \cdot \theta \cdot \Theta - \Theta
\]
ここで、\(Z\)：太陽高度
\(\theta\)：太陽の方位角
\(\phi\)：太陽の赤緯（冬至における値は - 0° 0')
\(\phi\)：対象地域の緯度（0° 0')
\(t\)：時角（1 時間について 0°の割合で、0°時を中心にとった値。午前はマイナス、午後はプラスとする）
\(L\)：ある時刻における日影の絶対長さ（m）
\(H\)：高架の高さ（m）
\(\ell\)：高架に直線な線が北からなす角度、つまり軌道の法線（延長方向）西からなす角度。右まわりをプラスにする。（方位角）
\(\ell\)：高架に直角にとりた日影長度対象構造物から日影線までの水平距離
太陽高度と方位

高架鉄道による日影（立体図）

高架鉄道による日影（水平面投影図）

図 太陽の高度、方位及び日影の関係
予測条件

日照阻害に関する予測条件の一覧は、表 に示すとおりである。

表 日照阻害に関する予測条件の一覧

<table>
<thead>
<tr>
<th>予測地点</th>
<th>0.5</th>
<th>1.0</th>
<th>1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>緯度</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>高欄高さ</th>
<th>盛土区間</th>
<th>高架区間</th>
</tr>
</thead>
<tbody>
<tr>
<td>盛土区間</td>
<td></td>
<td></td>
</tr>
<tr>
<td>高架区間</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>構造物上端高さ</th>
<th>盛土区間</th>
<th>高架区間</th>
</tr>
</thead>
<tbody>
<tr>
<td>右側</td>
<td></td>
<td></td>
</tr>
<tr>
<td>左側</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>2階高さにおける等時間日陰長さ（m）</th>
<th>4 時間</th>
<th>5 時間</th>
<th>4 時間</th>
<th>5 時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>左側（東側または北側）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>右側（西側または南側）</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(注) 1. 構造物上端高さは、周辺地盤からの相対高さである。
2. 構造物上端高さにおいて、右側及び左側とは、起点側（新大阪側）から見た場合の方向である。
3. 盛土区間は、0.5m以上の高欄を設置する。

予測結果

等時間日影長さの予測結果は、表 及び図 に示すとおりであり、2階高さにおける4時間日影長さ及び5時間日影長さは、△地点で0.5mおよび1.0m、△〜△地点で軌道敷地内となっている。また、時刻別日影長さ及び等時間日影長さの予測結果の詳細は、表 に示すとおりである。

表 等時間日影長さの予測結果の概要

<table>
<thead>
<tr>
<th>予測地点</th>
<th>2階高さにおける等時間日陰長さ（m）</th>
</tr>
</thead>
<tbody>
<tr>
<td>左側（東側または北側）</td>
<td>右側（西側または南側）</td>
</tr>
<tr>
<td>4 時間</td>
<td>5 時間</td>
</tr>
<tr>
<td>△△地点</td>
<td>△△m</td>
</tr>
<tr>
<td>△△地点</td>
<td>-</td>
</tr>
<tr>
<td>△△地点</td>
<td>-</td>
</tr>
</tbody>
</table>

(注) 1. 日陰長さは、2階高さにおいて構造物端から直角にといった日陰線までの水平距離である。
2. 日陰長さにおいて、「-」は当該時間の日陰が発生しないことを示している。
図5.7.2(1) 等時間日陰長さの予測結果（№②地点）

- 外環（都島行）
- 外環（新大阪行）

10.8
1.3
3.0 2.9

北 南

34.8
8

1時間
27.7
2時間
24.6
3時間
22.0
4時間
20.8
5時間
13.9

(表示は1/400、単位：メートル)

図5.7.2(1) 等時間日陰長さの予測結果（№②地点）
図5.7.2(2) 等時間日陰長さの予測結果（№⑨地点）
図5.7.2(3) 等時間日陰長さの予測結果（№⑩地点）

表

<table>
<thead>
<tr>
<th>項目</th>
<th>単位:メートル</th>
</tr>
</thead>
<tbody>
<tr>
<td>S=1/400</td>
<td></td>
</tr>
</tbody>
</table>

図5.7.2(3) 等時間日陰長さの予測結果（№⑩地点）
表5.7.5(1) 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（№②地点／高架高欄：2階高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ (北側)</th>
<th>12.1 m</th>
<th>構造物の上端高さ (南側)</th>
<th>12.1 m</th>
</tr>
</thead>
</table>
| 時刻 | 日陰長さ (m) | 高さH | 許容の角度θ (度) | 時刻 | 日陰長さ (m) | 高さH | 許容の角度θ (度) | 太陽高度
θ(度) | 北側断面 | 南側断面 |
| 8:00 | -37.82 | 8.100 | 173 | 3.02 | 8:00 | 37.82 | 0.00 | | | | | |
| 9:00 | -31.87 | 8.100 | 173 | 3.02 | 9:00 | -20.75 | 8.100 | 173 | 3.02 | 9:00 | -23.35 | 0.00 |
| 10:00 | -26.60 | 8.100 | 173 | 3.02 | 10:00 | -18.58 | 8.100 | 173 | 3.02 | 10:00 | -21.26 | 0.00 |
| 11:00 | -21.26 | 8.100 | 173 | 3.02 | 11:00 | -17.03 | 8.100 | 173 | 3.02 | 11:00 | -20.87 | 0.00 |
| 12:00 | -16.49 | 8.100 | 173 | 3.02 | 12:00 | -15.12 | 8.100 | 173 | 3.02 | 12:00 | -18.68 | 0.00 |
| 13:00 | -13.93 | 8.100 | 173 | 3.02 | 13:00 | -13.41 | 8.100 | 173 | 3.02 | 13:00 | -16.38 | 0.00 |
| 14:00 | -13.09 | 8.100 | 173 | 3.02 | 14:00 | -13.16 | 8.100 | 173 | 3.02 | 14:00 | -15.75 | 0.00 |
| 15:00 | -13.79 | 8.100 | 173 | 3.02 | 15:00 | -14.71 | 8.100 | 173 | 3.02 | 15:00 | -14.31 | 0.00 |
| 16:00 | -16.49 | 8.100 | 173 | 3.02 | 16:00 | -17.25 | 8.100 | 173 | 3.02 | 16:00 | -13.80 | 0.00 |

注:
1. 予測対象時間帯は、冬至日における昼太陽時の午前9時から午後4時までとした。
2. 日陰長さは、予測した高さにおいて構造物の直線方向に対する水平距離であり、南側（点線につながって右側）の日陰長さを示した。
3. 高さHは、予測から構造物の上端までの高さである。
表 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（〇地点/盛土法扇；2階高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ（西側）</th>
<th>〇</th>
<th>m</th>
<th>構造物の上端高さ（東側）</th>
<th>〇</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻</td>
<td>日陰長 L</td>
<td>高さ H</td>
<td>法線の角度</td>
<td>時角 t</td>
<td>緯度</td>
</tr>
<tr>
<td>09:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>10:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>11:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>12:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>13:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>14:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>15:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>16:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>17:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>18:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>19:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
<tr>
<td>20:00</td>
<td>05:00</td>
<td>30:00</td>
<td>45:00</td>
<td>60:00</td>
<td>75:00</td>
</tr>
</tbody>
</table>

等時間

<table>
<thead>
<tr>
<th>等時間</th>
<th>西側面</th>
<th>東側面</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>10:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>11:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>12:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>13:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>14:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>15:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>16:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>17:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>18:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>19:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
<tr>
<td>20:00</td>
<td>05:00</td>
<td>30:00</td>
</tr>
</tbody>
</table>

注
- 予測対象時間帯は、冬至における真支直の午前8時から午後4時までとした。
- 日陰長は、予測高さにおいて構造物高さ直角にといった日陰線までの水平距離であり、東側（終点に向かって右側）の日陰長さを正とした。
- 高さHは、予測高さから構造物の上端までの高さである。
<table>
<thead>
<tr>
<th>構造物の上流側の幅員(wm)</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>構造物の上流側の高さ(m)</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
<td>13</td>
</tr>
<tr>
<td>構造物の上流側の長さ(m)</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>構造物の上流側の形状</td>
<td>圆弧</td>
</tr>
</tbody>
</table>

図 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |

表 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 |
表 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（位置点 / 盛土法扇 / 2階高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ [西側]</th>
<th>m</th>
<th>構造物の上端高さ [東側]</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻</td>
<td>日陰長 L</td>
<td>高さ H</td>
<td>法線の角度</td>
</tr>
<tr>
<td>09:00</td>
<td>09:00</td>
<td>09:00</td>
<td>09:00</td>
</tr>
<tr>
<td>10:00</td>
<td>10:00</td>
<td>10:00</td>
<td>10:00</td>
</tr>
<tr>
<td>11:00</td>
<td>11:00</td>
<td>11:00</td>
<td>11:00</td>
</tr>
<tr>
<td>12:00</td>
<td>12:00</td>
<td>12:00</td>
<td>12:00</td>
</tr>
<tr>
<td>13:00</td>
<td>13:00</td>
<td>13:00</td>
<td>13:00</td>
</tr>
<tr>
<td>14:00</td>
<td>14:00</td>
<td>14:00</td>
<td>14:00</td>
</tr>
</tbody>
</table>

注：(1) 予測対象時間帯は、各日における真太陽時の午前8時から午後4時までとした。
(2) 日陰長 L は、予測時において構造物からの直線にとなった日陰長までの水平距離であり、東側（終点に向かって右側）の日陰長さを正とした。
(3) 高さ H は、予測高さから構造物の上までの高さである。
表 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（地点 / 高架高欄；2 階高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ（西側）</th>
<th>m</th>
<th>構造物の上端高さ（東側）</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻</td>
<td>日陰長 L</td>
<td>高さ H</td>
<td>法線の角度</td>
</tr>
<tr>
<td>00:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>00:30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:30</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

等時間

| |
|-------------------------|---|
| 西側断面 | 東側断面 |

<table>
<thead>
<tr>
<th>時間</th>
<th>西側断面</th>
<th>東側断面</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>00:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>時間</th>
<th>西側断面</th>
<th>東側断面</th>
</tr>
</thead>
<tbody>
<tr>
<td>00:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>00:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>01:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>02:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td>03:30</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

【注】1）予測対象時間帯は、每時における真太陽時前後8時から午後4時までとした。
2）日陰長さは、予測高さを基にした構造物の法線との角度を用い、等時間日陰長さを求めるものである（東側（片側に向かって右側）の日陰長さを正とした。）
3）高さ H は、予測高さが構造物の上端までの高さである。
構造物の上端高さ(北側) = 12.1 m
構造物の上端高さ(南側) = 12.1 m

<table>
<thead>
<tr>
<th>時刻</th>
<th>太陽高度</th>
<th>方位角</th>
<th>太陽高度</th>
<th>方位角</th>
</tr>
</thead>
<tbody>
<tr>
<td>8:00</td>
<td>-56.50</td>
<td>12.100</td>
<td>173</td>
<td>3.02</td>
</tr>
<tr>
<td>10:00</td>
<td>-47.62</td>
<td>12.100</td>
<td>173</td>
<td>3.02</td>
</tr>
<tr>
<td>12:00</td>
<td>-19.55</td>
<td>12.100</td>
<td>173</td>
<td>3.02</td>
</tr>
</tbody>
</table>

(注) 1. 予測対象時間帯は、冬至日における真太陽時の午前8時から午後4時までとした。
2. 日陰長さは、予測高さにおいて構造物端から直角にとった日陰線までの水平距離であり、南側(終点に向かって右側)の日陰長さを正とした。
3. 高さHは、予測高さから構造物の上端までの高さである。

等時間線日陰長さ(m)
等時間時刻

表5.7.6(1) 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細 №②地点／高架高欄：地盤高さ
表 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（○○地点／盛土法肩；地盤高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ [西側]</th>
<th>m</th>
<th>構造物の上端高さ [東側]</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>時刻</td>
<td>日陰長 L (m)</td>
<td>高さ H (m)</td>
<td>法線の角度</td>
</tr>
<tr>
<td>10:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>11:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>12:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>13:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>14:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>15:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>16:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

等時間

<table>
<thead>
<tr>
<th>時間</th>
<th>昼間陽長さ [m]</th>
<th>西側面</th>
<th>東側面</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>11:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>12:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>13:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>14:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>15:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
<tr>
<td>16:00</td>
<td>0.12</td>
<td>0.12</td>
<td>0.12</td>
</tr>
</tbody>
</table>

注 予測対象時間帯は、冬至日の正午1時から午後4時までとした。
① 日陰長さは、予測高さにおいて構造物頂点の直角にようになった日陰長までの水平距離であり、東側（終点に向かって右側）の日陰長さの正とした。
② 高さHは、予測高さから構造物の上端までの高さである。
<table>
<thead>
<tr>
<th>検査項目</th>
<th>側面1</th>
<th>側面2</th>
<th>側面3</th>
<th>側面4</th>
</tr>
</thead>
<tbody>
<tr>
<td>機械被圧力</td>
<td>5000</td>
<td>6000</td>
<td>7000</td>
<td>8000</td>
</tr>
<tr>
<td>機械被圧力</td>
<td>9000</td>
<td>10000</td>
<td>11000</td>
<td>12000</td>
</tr>
<tr>
<td>機械被圧力</td>
<td>13000</td>
<td>14000</td>
<td>15000</td>
<td>16000</td>
</tr>
</tbody>
</table>

補足：

- 表の Elijah 日によって異なる値を示す。
- 機械被圧力の値は、日々において異なる値を示す。
- 日々の値の差異は、機械の使用状態により異なる。

図

図は、機械の使用状態を示すものである。機械の使用状態が日々変動するため、図の形状も日々変動する。
表 時刻別日陰長さ及び等時間日陰長さの予測結果の詳細（地點 / 盛土法肩；地盤高さ）

<table>
<thead>
<tr>
<th>構造物の上端高さ（西側）</th>
<th></th>
<th>構造物の上端高さ（東側）</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>m</td>
<td></td>
<td>m</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>時刻</th>
<th>日陰長L</th>
<th>高さH</th>
<th>法線の角度θ</th>
<th>時角t</th>
<th>緯度φ</th>
<th>赤経λ</th>
<th>地形</th>
<th>日陰長Z</th>
<th>方位角</th>
<th>等時間</th>
<th>等時間日陰長さ（m）</th>
</tr>
</thead>
<tbody>
<tr>
<td>00时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>01时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>02时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>03时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>04时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>05时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>06时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>07时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>08时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>09时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>10时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>11时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>12时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>13时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>14时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>15时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>16时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>17时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>18时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>19时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>20时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>21时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>22时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
<tr>
<td>23时</td>
<td>500000</td>
<td>10000</td>
<td>30°</td>
<td>60°</td>
<td>45°</td>
<td>150°</td>
<td>30°</td>
<td>50000</td>
<td>150°</td>
<td>30°</td>
<td>50°</td>
</tr>
</tbody>
</table>

注：1) 予測対象時間帯は、冬至日における真冬時（午前8時から午後4時まで）とした。
2) 日陰長さは、予測時間に当時の構造物の西側にによる日陰長さを基にした結果であり、東側（終点に向かって右側）の日陰長さを正とした。
3) 高さHは、予測開始から構造物の上端までの高さである。
<table>
<thead>
<tr>
<th>時刻</th>
<th>日線長 L (m)</th>
<th>高さ H (m)</th>
<th>法線の角度 (°)</th>
<th>時角 t</th>
<th>縦度 (°)</th>
<th>赤線 (°)</th>
<th>大陽高度 Z (°)</th>
<th>方位角 (°)</th>
<th>等時刻</th>
<th>西側面</th>
<th>東側面</th>
</tr>
</thead>
<tbody>
<tr>
<td>0:00</td>
<td></td>
</tr>
<tr>
<td>0:30</td>
<td></td>
</tr>
<tr>
<td>1:00</td>
<td></td>
</tr>
<tr>
<td>1:30</td>
<td></td>
</tr>
<tr>
<td>2:00</td>
<td></td>
</tr>
<tr>
<td>2:30</td>
<td></td>
</tr>
<tr>
<td>3:00</td>
<td></td>
</tr>
<tr>
<td>3:30</td>
<td></td>
</tr>
<tr>
<td>4:00</td>
<td></td>
</tr>
<tr>
<td>4:30</td>
<td></td>
</tr>
<tr>
<td>5:00</td>
<td></td>
</tr>
<tr>
<td>5:30</td>
<td></td>
</tr>
</tbody>
</table>

注 ① 予測対象時間帯は、毎日における真太陽時の午前8時から午後4時までとした。
② 日線長は、予測開始温度で構造物切上げ直角にした日線までの水平距離であり、東側（終点に向かって右側）の日線長を正とした。
③ 高さ H は、予測開始時から構造物の上端までの高さである。
評価
日照阻害の評価は、環境への影響を最小限にとどめるよう環境保全について配慮されていることともし、具体的には、環境影響を回避・低減するための配慮が適正であるかの評価を行い、併せて、建築基準法の趣旨を踏まえて出された「公共施設の設置に起因する日陰により生ずる損害等に係る費用負担について」（昭和 44年 2月 29日、建設省計画局第 4号、建設事務次官から北海道開発局長・沖縄総合事務局長・建設省各地方建設局長あて通知/最終改正、平成 7年 7月 20日、国土交通省国総局第 18号）以下「国土交通省通達」という。との対比を行うこととした。国土交通省通達における日影時間の要件（日照阻害の程度が社会生活上受忍すべき範囲を超えているかどうかの目安となる基準）は、表 に示すとおりである。
等時間日影長さの予測結果は、○地点では、2階高さにおいて5時間日影長さが軌道敷地内となっており、国土交通省通達における日影時間の要件を満足しているものと考えられる。一方、地点では、2階高さにおいて5時間日影長さがmとなってしまい、構造物直近の一部地域で日影の影響が生じることが考えられる。今後、事業実施までに詳細な検討を行ったうえ、事業による影響が生じる場合には関係住民等に対して、その内容及び対応について説明し適切な対応を図るものとする。
以上より、日照阻害は周辺環境に著しい影響を及ぼさないものと考えられる。

表 土国交通省通達における日影時間の要件

<table>
<thead>
<tr>
<th>（イ）</th>
<th>（ロ）</th>
<th>（ハ）</th>
</tr>
</thead>
<tbody>
<tr>
<td>地域又は区域</td>
<td>日陰時間</td>
<td>北海道以外の区域</td>
</tr>
<tr>
<td>○○</td>
<td>第1種低層住居専用地域又は第2種低層住居専用地域</td>
<td>1階</td>
</tr>
<tr>
<td>○○</td>
<td>第1種中高層住居専用地域又は第2種中高層住居専用地域</td>
<td>2階</td>
</tr>
<tr>
<td>○○</td>
<td>第1種住居地域、第2種住居地域、準住居地域又は近隣商業地域若しくは準工業地域のうち土地利用の状況が第1種住居地域、第2種住居地域、準住居地域における土地利用の状況と類似していると認められる区域の範囲、準住居地域又は近隣商業地域若しくは準工業地域のうち土地利用の状況が第1種住居地域、第2種住居地域、準住居地域における土地利用の状況と類似していると認められる区域の範囲</td>
<td>2階</td>
</tr>
<tr>
<td>○○</td>
<td>上記以外の地域又は区域のうち土地利用の状況が○○から○○までに掲げる地域又は区域における土地利用の状況と類似していると認められる区域又は区域</td>
<td>地域又は区域の状況に応じて○○から○○までに準拠するものと扱う。</td>
</tr>
</tbody>
</table>

備考
1（イ）欄の第1種低層住居専用地域、第2種低層住居専用地域、第1種中高層住居専用地域、第2種中高層住居専用地域、準住居地域又は近隣商業地域若しくは準工業地域のうち土地利用の状況が第1種住居地域、準住居地域のうち土地利用の状況と類似していると認められる区域又は区域。
2（ハ）欄に掲げる日陰時間は、開口部が真南に面する建物に係る日陰時間であり、その他の建物については、当該建物の開口部の面する方位に応じて補正するものとする。
3（ロ）欄に掲げる日陰時間は、（ハ）欄に掲げる日陰時間を基準とし、公共施設の高さ、公共施設と住宅等との位置関係等の状況を勘案して定めるものとする。
事業内容の変更に係る検証結果

現行認可案と変更案の等時間日影長さの比較は、表[表]に示すとおりである。

<table>
<thead>
<tr>
<th>予測地点</th>
<th>2階高さにおける等時間日陰長さ（m）</th>
<th>4時間</th>
<th>5時間</th>
<th>4時間</th>
<th>5時間</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. 2階</td>
<td>現行認可案</td>
<td>1. 2階</td>
<td>現行認可案</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2. 2階</td>
<td>変更案</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

（注）1. 日陰長さは、2階高さにおいて構造物端から直角にとった日陰線までの水平距離である。
2. 日陰長さにおいて、「-」は該当時間の日陰が発生しないことを示している。
5.8 電波障害

5.8.1 施設の存在に伴う電波障害

（1）予測・評価の概要

施設の存在に伴う電波障害の影響の予測・評価は、環境影響評価書（平成14年11月）と同様の手法で行うこととし、予測の概要は表5.8.1、評価の概要は表5.8.2に示すとおりである。

表5.8.1 電波障害に関する予測の概要

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設の存在</td>
<td></td>
</tr>
<tr>
<td>予測項目</td>
<td>電波障害</td>
</tr>
<tr>
<td>予測事項</td>
<td>電波障害の範囲</td>
</tr>
<tr>
<td>予測地点</td>
<td>事業計画路線の沿線地域</td>
</tr>
<tr>
<td>予測時期</td>
<td>施設の出現時</td>
</tr>
<tr>
<td>予測方法</td>
<td>環境影響評価書（平成14年11月）で適用した「建造物障害予測の手引き 改訂版」に示されている計算式</td>
</tr>
</tbody>
</table>

表5.8.2 電波障害に関する評価の概要

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>電波障害</td>
<td></td>
<td></td>
</tr>
<tr>
<td>①環境への影響を最小限にとどめるよう環境保全について配慮されていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
<td></td>
</tr>
<tr>
<td>②事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td>「公共施設の設置に起因するテレビジョン電波受信障害により生ずる損害等に係る費用負担について」（昭和54年10月12日、建設省計用発第35号、建設事務次官から北海道開発局長・沖縄総合事務局長・建設省各地方建設局長あて通知／最終改正、平成15年7月11日、国土交通省国総国調第47号）に示されている電波障害改善方法を踏まえた上で、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>構造物による電波障害の範囲について、現行認可案と変更案との比較・検証を行う。</td>
<td></td>
</tr>
</tbody>
</table>
(2) 予測方法

構造物による電波障害範囲は、送信アンテナの位置（高さと検討対象地域までの距離）及び構造物の計画諸元（高さと実効横幅、電波到来方向に対する角度）等から、「建造物障害予測の手引き改訂版」に示されている計算式を用いて計算した。この予測方法は、理論的に導かれた電波障害予測計算式を実測データ等を参考に簡略化したものである。例えば、フレネル積分、大地反射波による位相損失、送信アンテナの指向性、都市減衰等について平均化もしくは簡略化がなされている。簡略化された実用式の概要は以下のとおりである。

(a) 障害範囲

(7) 障害範囲（D₂）の実用式

\[D₂ \approx \frac{1}{dz'} - \frac{1}{d₂^0} \] (5.8.1)

ここで、\(dz' \) : 電波が水平（仰角 \(\delta_v = 0 \)）に到来した時の障害範囲（m）（(イ)参照）

\(d₂^0 \) : ビル高に対応する見通し距離（m）（(ウ)参照）

(4) \(dz' \) の計算式

\[dz' = \frac{f w (H-h_2)}{6 \left[\frac{Ex^2 w}{16 (H-h_2)^2} \right] + \frac{H-h_2}{w} + 10 \left(\frac{Sl}{10} \right)} \] (5.8.2)

ここで、\(f \) : 受信周波数（MHz）

\(w \) : 構造物実効横幅（m）

\(H \) : 構造物高（m）

\(h_2 \) : 受信アンテナ高（m）

\[Ex = Ex_1 \cdot Ex_2 \] （ただし、\(Ex > 10 \) の時は \(Ex = 10 \)）

\(Ex_1 \) : 構造物頂部と受信点に到来する希望波のそれぞれの位相合成率の比

\(Ex_2 \) : 構造物建設後の構造物頂部を経由して受信点に至る経路の都市減衰と、構造物建設前の都市減衰の比
① Ex1 の計算式

\[
\begin{cases}
1 & (d'_1 < dh_2 \text{の時}) \\
\frac{d'_1}{dh_2} & (dh_2 < d'_1 < d_h \text{の時}) \\
\frac{1}{d'_1} & (d'_1 > d_h \text{の時})
\end{cases}
\] (5.8.3)

ただし、

\[
d'_1 = \begin{cases}
\frac{d_1}{h_1h_2/7} & (d_1 \leq fh_1h_2/7) \\
\frac{1}{d_1} \times \frac{d_1}{17 \times 10^6 \cdot h_1 \left\{ 1 + \sqrt{h_2/h_1} \right\}^2} & (d_1 > fh_1h_2/7)
\end{cases}
\]

\[dh_2 = \frac{1}{25} fh_1h_2\]

\[dh_h = \frac{1}{25} fh_1H\]

\[h_1: \text{送信アンテナ高 (m)}\]

\[d_1: \text{送・受信点間距離 (m)}\]

② Ex2 の計算式

\[
Ex2 = \begin{cases}
\left(\frac{1}{h_2} \right)^{kh_2/15} & (H/h_2) \leq 10^{kh_2/20} \text{の時} \\
\left(\frac{H}{h_2} \right)^{kh_2/15} & (H/h_2) > 10^{kh_2/20} \text{の時}
\end{cases}
\] (5.8.4)

なお、Ex2 > K(h_2)^{0.6} の時は、Ex2 = K(h_2)^{0.6}

ただし、K(h_2) : 都市減衰（デシベル）

K(h_2)は原則として実測により求める。実測が得られない場合は、中小都市内に限り次の実験式を用いる。

\[
K(h_2) = 4 \left(\frac{f}{25} \right)^{1/3} \left\{ 1 - \log \left(\frac{h_2}{8} \right) \right\}^{2}
\]

(5.8.5)

(9) d_{20} の計算式

\[
d_{20} = \frac{H-h_2}{h_1-h} \times d_1
\]

ここで、

\[
\begin{align*}
H, h_2: & \quad (① と同じ) \\
h_1: & \quad (① と同じ) \\
d_1: & \quad (① と同じ)
\end{align*}
\]
反射障害

\[D/U = (D_2 - D_1) + K(h_0) + \eta_e + D(\theta)_{\text{ant}} - 20 \log_{10}(E_{\text{el}} \cdot 2S_U \cdot \beta \nu \cdot A_e \cdot B_{\text{eo}} \cdot E_{\text{ld}}) \]

\[W_0 = \frac{w_0}{2} - 10 \frac{\eta - \eta_s}{20} \]

ここで、

- \(D_1 \): 受信点方向における送信アンテナの指向性（デシベル）
- \(D_2 \): 反射面方向における送信アンテナの指向性（デシベル）
- \(K(h_0) \): 送信面から反射面までの入射波に対する都市減衰（デシベル）
- \(\eta_e \): 反射損失（デシベル）（式(5.8.9)参照）
- \(D(\theta)_{\text{ant}} \): 受信アンテナ指向性（デシベル）
- \(E_{\text{el}} \): 高架構造物頂部と受信アンテナに到達する電波の位相合成率の比（式(5.8.3)参照）
- \(2S_U \): 都市減衰を考慮した反射波の大地反射波による位相合成率（式(5.8.14)参照）
- \(\beta \nu \): 反射面に入射する電波の仰角による反射面垂直指向性の補正値（式(5.9.16)参照）
- \(A_e \): 反射波の都市減衰、反射面の凹凸を考慮した水平入射電波に対する反射面縦幅のフレネル積分値（式(5.8.10)参照）
- \(B_{\text{eo}} \): 反射方向中心線上からみた反射面横幅のフレネル積分値（式(5.8.12)参照）
- \(E_{\text{ld}} \): 受信点に到達する希望波と反射波の伝搬距離差による電界強度比（式(5.8.19)参照）
- \(w_0 \): 反射面の反射損がないと仮定したときの障害片幅（式(5.8.21)参照）

各特定点の距離を求め、最も近い特定点におけるDU比を式(5.8.7)を用いて求め、図5.8.4のようにそれぞれの減衰特性に従ってDU比カーブを描く。

![DU比カーブとモデル化したDU比カーブ](image)

図 5.8.4 実用式によるDU比の距離特性

DU比カーブとモデル化したDU比カーブ（入射角に対応するD/U23カーブ）の交点をそれぞれ \(X_{\text{min}} \), \(X_{\text{max}} \) とし、\(X_{\text{max}} \)を障害距離とする。

-122-
図 5.8.5 に示すように、反射中心線上の任意の距離 d_{2} における $W_{0}/2$ から、中心線上のそれぞれの地点から障害肩幅 $W_{0}/2$ 離れた地点をプロットする。なお、$X_{\text{min}}, X_{\text{max}}$ においては $W_{0}/2 = 0$ とする。

図 5.8.5 反射障害範囲

（7） η_{e} の計算式

$$\eta_{e} = 4 \left(\frac{f}{25} \right)^{1/2} - 20 \log_{10} (\cos \theta_{h0}) \quad \text{（5.8.9）}$$

ここで、θ_{h0}：水平面入射角

（4） A_{e} の計算式

$$A_{e} = \frac{d_{2A} \cdot \alpha_{A}}{d_{2}} \quad \text{（5.8.10）}$$

$$d_{2A} = \frac{1}{4} \cdot 10^{-\frac{K_{e}(bh_{0})}{20}} \cdot \frac{2fa_{h}}{75} \quad \text{（5.8.11）}$$

ここで、d_{1}：送受信点間距離（m）

d_{2}：建造物・受信点間距離（m）

a：反射面の縦幅（m）

h_{0}：反射面中心高（m）

ただし、$\alpha_{A} = 10^{-\frac{K_{e}(bh_{0})}{20}} \cdot \frac{2a}{h_{0}}$

$d_{2} \leq d_{2A}$ のとき、$A_{e} = \sqrt{\alpha_{A}}$

（9） B_{e0} の計算式

$$B_{e0} = \frac{d_{2B}}{d_{2}} \quad \text{（5.8.12）}$$

$$d_{2B} = \frac{b_{e}^{2}}{300} \quad \text{（5.8.13）}$$

$$b_{e} = b \cos \theta_{h0} \quad \text{（5.8.14）}$$

ここで、b：反射面横幅（m）

ただし、$d_{2} \leq d_{2B}$ のとき、$B_{e0} = 1$
(9) $2S_U$ の計算式

$$2S_U = \frac{d_2}{d_C}$$ \hspace{1cm} (5.8.15)

$$d_{2C} = 10^{k(A3) \cdot \frac{\rho h_0 h_2}{20}}$$ \hspace{1cm} (5.8.16)

ただし、$d_2 \leq d_{2C}$ のとき、$2S_U = 1$

(10) β_V の計算式

$$d_{2D} \leq d_2 \leq d_{2E}$$ のとき、$\beta_V = \frac{d_{2D}}{d_2}$

$$d_2 > d_{2E}$$ のとき、$\beta_V = \frac{d_{2D}}{d_2}$ \hspace{1cm} (5.8.17)

$$d_{2D} = \frac{h_0 - h_2}{h_1 - h_0} \cdot d_1$$ \hspace{1cm} (5.8.18)

$$d_{2E} = 0.4d \left(\frac{f}{25} \right) \cdot (h_0 - h_2)$$ \hspace{1cm} (5.8.19)

ただし、$d_2 \leq d_{2D}$ または $d_{2E} \leq d_{2D}$ のとき、$\beta_V = 1$

(11) E_{sd} の計算式

$$E_{sd} = \frac{d}{d_1 + d_2}$$ \hspace{1cm} (5.8.20)

$$d = \sqrt{d_1^2 + d_2^2 - 2d_1d_2 \cos(2\theta)}$$ \hspace{1cm} (5.8.21)

(12) $\frac{w_0}{2}$ の計算式

$$\frac{w_0}{2} = 1.2 \left[\frac{h_2}{2} + 2 \left(\frac{\gamma}{6} \right) - 1 \right] \left(\frac{25d_2}{f} \right)$$ \hspace{1cm} (5.8.22)

ここで、γ : DU比とD/23カーブとの差（デシベル）

(13) 特定点

A_e、B_{eo}、$2S_U$ 及び β_V は、d_2 に対し減衰特性をもち、この減衰特性は次に示す5つの特定点A_e ～E により表すことができる。

A点：反射面積横幅に有限長のために生じる減衰の開始点（式(5.8.11)参照）

B点：反射面積横幅に有限長のために生じる減衰の開始点（式(5.8.13)参照）

C点：反射波の大地反射波の位相合成による減衰の開始点（式(5.8.16)参照）

D点：反射面へ入射する電波の仰角による反射面垂直指向性の補正開始点（式(5.8.18)参照）

E点：反射面へ入射する電波の仰角による反射面垂直指向性の補正終了点（式(5.8.19)参照）

A_e、B_{eo}、$2S_U$ 及び β_V は、A～Eの特定点を境として次のような減衰特性をもつ。

A_e : A点以遠で -3 デシベル/oct

B_{eo} : B点以遠で -3 デシベル/oct
2S_U : C点以遠で−6 デシベル/oct

β_E : D点～E点で−6 デシベル/oct、E点以遠ではフラット。ただし、D点よりE点の方が
建造物に近い場合は、距離に関わりなくβ_E=1とする。

(3) 予測条件

(a) 予測計算点

調査対象地域における事業計画路線の区間については、構造物高さ等が縦断的に変化しているこ
とから、予測計算点は図5.8.6に示すとおり、当該条件に関する代表地点として、構造物が高くな
る地点及び低くなる地点について3地点を抽出した。

(b) 調査対象とした送信局

予測計算の対象チャンネルは、表5.8.3に示す事業計画路線の沿線地域で通常受信されているチ
ャンネルのうちVHF Lo（2ch）、VHFI li（12ch）、UHF（19ch：大阪局）、UHF（34ch：
京都局）及びUHF（36ch：神戸局）とした。5波を選定した理由は、以下に示すとおりである。

電波は、音や光と同じように波であることから、障害物を回り込んで伝搬していく、回り込む程
度は波長すなわち周波数により異なる。したがって、周波数の最高と最低の電波を対象とすれば最
大の影響範囲を求めることができると。そこで、VHFについては、送信所がほぼ同じであるため、
最も周波数の低い2chと最も周波数の高い12chを対象とし、UHFについては、周波数にへだた
りがあることと、送信所が、京都、大阪、神戸と異なることから19、34、36chを対象とした。

<table>
<thead>
<tr>
<th>チャンネル</th>
<th>放送局名</th>
<th>送信場所</th>
<th>東緯</th>
<th>北緯</th>
<th>送信周波数(MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2ch</td>
<td>NHK総合(NHK)</td>
<td>大阪局(生駒山)</td>
<td>135°40′45″</td>
<td>34°40′20″</td>
<td>97.3</td>
</tr>
<tr>
<td>4ch</td>
<td>毎日放送(MBS)</td>
<td></td>
<td>135°40′49″</td>
<td>34°40′23″</td>
<td>171.3</td>
</tr>
<tr>
<td>6ch</td>
<td>朝日放送(ABC)</td>
<td></td>
<td>135°40′53″</td>
<td>34°40′26″</td>
<td>183.3</td>
</tr>
<tr>
<td>8ch</td>
<td>関西テレビ(KTV)</td>
<td></td>
<td>135°40′50″</td>
<td>34°40′25″</td>
<td>193.3</td>
</tr>
<tr>
<td>10ch</td>
<td>銀河テレビ(YTV)</td>
<td></td>
<td>135°40′55″</td>
<td>34°40′28″</td>
<td>205.3</td>
</tr>
<tr>
<td>12ch</td>
<td>NHK教育(NIKE)</td>
<td></td>
<td>135°40′46″</td>
<td>34°40′22″</td>
<td>217.3</td>
</tr>
<tr>
<td>19ch</td>
<td>テレビ大阪(TVO)</td>
<td></td>
<td>135°40′24″</td>
<td>34°40′24″</td>
<td>507.3</td>
</tr>
<tr>
<td>32ch</td>
<td>NHK総合(NHK)</td>
<td></td>
<td>京都市(北野山)</td>
<td>135°49′58″</td>
<td>35°02′59″</td>
</tr>
<tr>
<td>34ch</td>
<td>近畿放送(KBS京都)</td>
<td></td>
<td>135°49′58″</td>
<td>35°02′59″</td>
<td>597.3</td>
</tr>
<tr>
<td>28ch</td>
<td>NHK総合(NHK)</td>
<td></td>
<td>神戸局(明石山)</td>
<td>135°12′24″</td>
<td>34°43′48″</td>
</tr>
<tr>
<td>36ch</td>
<td>サンテレビ(SUN)</td>
<td></td>
<td>135°12′31″</td>
<td>34°43′50″</td>
<td>609.3</td>
</tr>
</tbody>
</table>
図5.8.6 電波障害の予測計算点
（c）受信点高さ
受信点高さは、地上8m（家屋アンテナ高さ）とした。

（d）遮へい損失
遮へい損失は、現地調査結果及び図5.8.7より設定した。

出典：「構造物障害予測のための近畿地区主要中継局送信データ」（平成4年11月、（社）日本ＣＡＴＶ技術協会近畿支部・NHK大阪放送局）

図5.8.7 遮へい損失カーブ

（e）構造物及び送受信点に関する詳細条件
構造物及び送受信点に関する詳細条件の一覧は、表5.8.4に示すとおりである。なお、表5.8.4の項目が示す具体的な内容は、図5.8.8に示すとおりである。

図5.8.8 構造物及び送受信点に関する詳細条件の各項目が示す具体的な内容
表 5.8.4(1) 構造物及び送受信点に関する詳細条件の一覧（VHF2ch）

| 予測地点 | 計画軌道面高さ (m) | 地盤高さ (m) | 架線高さ (m) | 項目 | 予測地点 | 計画送信点高さ (m) | 送信点軌道面高さ計算値 (H1) (m) | 送信点高さ計算値 (H) (m) | 送信点間距離計算値 (d1) (km) | 予測計算点位置 | 電波到来方向* | 東経 (度、分、秒) | 北緯 (度、分、秒) |
|----------|-----------------|--------------|--------------|------|----------|----------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| №1 | 9.8 | 3.5 | 4.5 | 予測地点 | 9.8 | 684.1 | 10.9 | 17.39 | 297.5 | 135°30′38″ | 34°44′41″ |
| №2 | 12.6 | 3.1 | 4.5 | №2 | 684.5 | 14.3 | 17.37 | 297.8 | 135°30′40″ | 34°44′43″ |
| №3 | 10.2 | 2.3 | 4.5 | №3 | 685.3 | 11.9 | 17.26 | 298.5 | 135°30′48″ | 34°44′48″ |

（注）1. 電波の抜ける方向を北を基点とした時計回りの角度で示す。
2. 高さは、東京湾中等潮位で表す。

表 5.8.4(2) 構造物及び送受信点に関する詳細条件の一覧（VHF12ch）

| 予測地点 | 計画軌道面高さ (m) | 地盤高さ (m) | 架線高さ (m) | 項目 | 予測地点 | 計画送信点高さ (m) | 送信点軌道面高さ計算値 (H1) (m) | 送信点高さ計算値 (H) (m) | 送信点間距離計算値 (d1) (km) | 予測計算点位置 | 電波到来方向* | 東経 (度、分、秒) | 北緯 (度、分、秒) |
|----------|-----------------|--------------|--------------|------|----------|----------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| №1 | 9.8 | 3.5 | 4.5 | 予測地点 | 9.8 | 679.1 | 10.9 | 17.39 | 297.5 | 135°30′38″ | 34°44′41″ |
| №2 | 12.6 | 3.1 | 4.5 | №2 | 679.5 | 14.3 | 17.37 | 297.8 | 135°30′40″ | 34°44′43″ |
| №3 | 10.2 | 2.3 | 4.5 | №3 | 680.3 | 11.9 | 17.26 | 298.5 | 135°30′48″ | 34°44′48″ |

（注）1. 電波の抜ける方向を北を基点とした時計回りの角度で示す。
2. 高さは、東京湾中等潮位で表す。

表 5.8.4(3) 構造物及び送受信点に関する詳細条件の一覧（UHF19ch）

| 予測地点 | 計画軌道面高さ (m) | 地盤高さ (m) | 架線高さ (m) | 項目 | 予測地点 | 計画送信点高さ (m) | 送信点軌道面高さ計算値 (H1) (m) | 送信点高さ計算値 (H) (m) | 送信点間距離計算値 (d1) (km) | 予測計算点位置 | 電波到来方向* | 東経 (度、分、秒) | 北緯 (度、分、秒) |
|----------|-----------------|--------------|--------------|------|----------|----------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| №1 | 9.8 | 3.5 | 4.5 | 予測地点 | 9.8 | 556.5 | 10.9 | 16.86 | 298.0 | 135°30′38″ | 34°44′41″ |
| №2 | 12.6 | 3.1 | 4.5 | №2 | 556.9 | 14.3 | 16.84 | 298.3 | 135°30′40″ | 34°44′43″ |
| №3 | 10.2 | 2.3 | 4.5 | №3 | 557.7 | 11.9 | 16.74 | 299.0 | 135°30′48″ | 34°44′48″ |

（注）1. 電波の抜ける方向を北を基点とした時計回りの角度で示す。
2. 高さは、東京湾中等潮位で表す。

表 5.8.4(4) 構造物及び送受信点に関する詳細条件の一覧（UHF34ch）

| 予測地点 | 計画軌道面高さ (m) | 地盤高さ (m) | 架線高さ (m) | 項目 | 予測地点 | 計画送信点高さ (m) | 送信点軌道面高さ計算値 (H1) (m) | 送信点高さ計算値 (H) (m) | 送信点間距離計算値 (d1) (km) | 予測計算点位置 | 電波到来方向* | 東経 (度、分、秒) | 北緯 (度、分、秒) |
|----------|-----------------|--------------|--------------|------|----------|----------------|----------------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|
| №1 | 9.8 | 3.5 | 4.5 | 予測地点 | 9.8 | 616.5 | 10.9 | 44.86 | 220.8 | 135°30′38″ | 34°44′41″ |
| №2 | 12.6 | 3.1 | 4.5 | №2 | 616.9 | 14.3 | 44.78 | 220.8 | 135°30′40″ | 34°44′43″ |
| №3 | 10.2 | 2.3 | 4.5 | №3 | 617.7 | 11.9 | 44.53 | 220.7 | 135°30′48″ | 34°44′48″ |

（注）1. 電波の抜ける方向を北を基点とした時計回りの角度で示す。
2. 高さは、東京湾中等潮位で表す。
表 5.8.4(5) 構造物及び送受信点に関する詳細条件の一覧（UHF 36ch）

<table>
<thead>
<tr>
<th>項目</th>
<th>予測地点</th>
<th>計画高さ (m)</th>
<th>地盤高さ (m)</th>
<th>架線高さ (m)</th>
<th>送信点高さ計算値 (h1) (m)</th>
<th>送信点高さ計算値 (H) (m)</th>
<th>架線高さ計算値</th>
<th>送信点間距離 (d1) (km)</th>
<th>予測計算点位置</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>№1</td>
<td>9.8</td>
<td>3.5</td>
<td>4.5</td>
<td>729.5</td>
<td>10.9</td>
<td>27.63</td>
<td>86.8</td>
<td>135°30′38″</td>
</tr>
<tr>
<td></td>
<td>№2</td>
<td>12.6</td>
<td>3.1</td>
<td>4.5</td>
<td>729.9</td>
<td>14.3</td>
<td>27.68</td>
<td>86.7</td>
<td>135°30′40″</td>
</tr>
<tr>
<td></td>
<td>№3</td>
<td>10.2</td>
<td>2.3</td>
<td>4.5</td>
<td>730.7</td>
<td>11.9</td>
<td>27.89</td>
<td>86.4</td>
<td>135°30′48″</td>
</tr>
</tbody>
</table>

（注）1. 電波の抜ける方向を北を基点とした時計回りの角度で示す。
2. 高さは、東京湾中等潮位で表す。

(4) 予測結果

電波障害の予測結果は、表 5.8.5 及び図 5.8.9 に示すとおり、遮蔽障害範囲は 23.5～151.8m、
反射障害は発生しないものとなっている。

表 5.8.5 電波障害の予測結果の概要

<table>
<thead>
<tr>
<th>局名</th>
<th>チャンネル</th>
<th>遮蔽障害範囲 (m)</th>
<th>反射障害範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>No.1</td>
<td>No.2</td>
</tr>
<tr>
<td>大阪局</td>
<td>VHF 2ch</td>
<td>34.9</td>
<td>83.5</td>
</tr>
<tr>
<td></td>
<td>VHF 12ch</td>
<td>46.9</td>
<td>105.3</td>
</tr>
<tr>
<td></td>
<td>UHF 19ch</td>
<td>23.5</td>
<td>75.6</td>
</tr>
<tr>
<td>京都局</td>
<td>UHF 34ch</td>
<td>54.7</td>
<td>95.0</td>
</tr>
<tr>
<td>神戸局</td>
<td>UHF 36ch</td>
<td>63.0</td>
<td>151.8</td>
</tr>
</tbody>
</table>
（5）評価

電波障害の評価は、環境への影響を最小限にとどめるよう環境保全について配慮されていることとし、具体的には、「公共施設の設置に起因するテレビジョン電波受信障害により生ずる損害等に係る費用負担について」（昭和54年10月12日、建設省計用発第35号、建設事務次官から北海道開発局長・沖縄総合事務局長・建設省各地方建設局長あて通知／最終改正、平成15年7月11日、国土交通省国総国調第47号）（以下「国土交通省通達」という。）に示されている電波障害改善方法を踏まえた上で、環境影響を回避・低減するための配慮が適正であるかの評価を行うこととした。国土交通省通達に示されている電波障害改善方法は、表5.8.6に示すとおりである。

事業計画路線の構造物がテレビジョン電波の受信に及ぼす影響は、VHFテレビジョン電波、UHFテレビジョン電波とも一部の地域で遮へい障害が生じると予測された。

本事業における構造物の築造段階で障害が生じると予測された区域及びその周辺については、既にCATV局のサービスエリアとなっていることから、必要に応じCATV加入等による障害防止対策を講じることとする。また、構造物の完成後も調査を行い、障害が認められる場合には速やかに同様の対策を講じることとし、さらに、工事中に障害の発生が認められる場合には、原因を調査のうえ速やかに対策を講じることにより、テレビジョン電波の受信に障害を及ぼすことはないと考える。なお、調査対象地域はCATV局が開局済みである。

以上より、電波障害は周辺環境に著しい影響を及ぼさないものと考えられる。

| 表 5.8.6 国土交通省通達に示されている電波障害の改善方法 |
|----------------|--|
| 電波障害改善方法 | 改善方法の内容 |
| (1) 共同受信施設の設置 | 措置の対象となる一まとまりの区域内又はその近くで良好な電波を受信できる場所に受信アンテナ（親アンテナ）を設置し、そこで受信したテレビ電波を有線で伝送し、各戸に分配する方法 |
| (2) 個別受信施設の設置 | 新たに個別アンテナを設置する方法 |
| (3) 受信施設の移設又は改良その他の必要な措置 | 従前の共同受信施設又は個別受信施設の受信アンテナの位置、高さ、方向等の調整、部品の改良等により改善する方法 |
| (4) (1)から(3)以外の改善方法 | 既存の有線テレビジョン放送を利用する等による方法 |
（6） 事業内容の変更に係る検証結果

環境影響評価書（平成14年11月）に示している電波障害の予測結果は、表5.8.7に示すとおりである。№2地点は本検討の予測計算点の№2地点付近となっていることから、遮蔽障害範囲の予測結果を比較すると、神戸局（UHF 36ch）については、現行認可案の№2地点では135m、変更案の№2地点では152mとなっている。変更案では現行認可案よりも遮蔽障害範囲が若干拡大している。

なお、事業計画路線の北側地域では、図5.8.10に示すとおり、事業計画路線が近寄ること及び事業計画路線の高さが高くなったことに伴って、電波障害範囲は現行認可案より若干拡大している。一方、事業計画路線の南側地域では、事業計画路線の高さが高くなるが、事業計画路線が遠ざかることから電波障害範囲は現行認可案と概ね同程度となっている。

また、CATV加入等による障害防止対策の実施及び構造物完成後の調査実施に関する考え方については、環境影響評価書（平成14年11月）と同様の考え方となっている。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、著しい差異はないものと判断した。

<table>
<thead>
<tr>
<th>局名</th>
<th>チャンネル</th>
<th>遮蔽障害範囲(m)</th>
<th>反射障害範囲</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>№2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>大阪局</td>
<td>VHF 2ch</td>
<td>72.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>VHF 12ch</td>
<td>93.4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>UHF 19ch</td>
<td>68.7</td>
<td></td>
</tr>
<tr>
<td>京都局</td>
<td>UHF 34ch</td>
<td>93.5</td>
<td></td>
</tr>
<tr>
<td>神戸局</td>
<td>UHF 36ch</td>
<td>135.0</td>
<td></td>
</tr>
</tbody>
</table>

(注) №2地点は本検討の予測計算点の№2地点付近となっている。
景観

施設の存在に伴う景観

予測・評価の概要

施設の存在に伴う景観の予測・評価は、環境影響評価書（平成 年 月）と同様の手法で行うこととし、予測の概要は表 に示すとおりである。

<table>
<thead>
<tr>
<th>影響要因</th>
<th>予測の概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>施設の存在</td>
<td>予測項目</td>
</tr>
<tr>
<td></td>
<td>予測事項</td>
</tr>
<tr>
<td></td>
<td>予測地点</td>
</tr>
<tr>
<td></td>
<td>予測時期</td>
</tr>
<tr>
<td></td>
<td>予測方法</td>
</tr>
</tbody>
</table>

景観に関する評価の概要

<table>
<thead>
<tr>
<th>予測項目</th>
<th>評価の手法</th>
<th>概要</th>
</tr>
</thead>
<tbody>
<tr>
<td>景観</td>
<td>景観形成について十分な配慮がなされていること。</td>
<td>周辺環境への影響の低減措置等、環境保全対策について明示し、環境影響を回避・低減するための配慮が適正であるかの評価を行う。</td>
</tr>
<tr>
<td></td>
<td>環境基本計画、大阪府環境総合計画、自然環境の保全と回復に関する基本方針等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないこと。</td>
<td>吹田市景観まちづくり計画を考慮した計画となっているかの評価を行う。</td>
</tr>
<tr>
<td></td>
<td>事業内容の変更に伴う環境影響評価の範囲又は程度について、著しい差異がないこと。</td>
<td>事業計画路線の構造物の存在に伴う景観の変化について、現行認可案と変更案との比較・検証を行う。</td>
</tr>
</tbody>
</table>
事業計画路線の構造物の存在に伴う景観の変化を予測する方法としては、フォトモンタージュ（合成写真）による方法、コンピュータディスプレイ法、透視図の作成による方法、模型の作成による方法等がある。

事業計画路線は、大部分が既存の城東貨物線を複線化または複線電化することにより旅客用として改良するものであり、用地、施設が現存していることから、景観を予測するに当たっては、現状に対する変化の程度を把握できる手法が望ましいと考えられ、その手法としてフォトモンタージュの作成が適切であると考えた。

予測の手順は、図 に示すとおりである。

図 景観予測の手順

表 予測対象とする視点

<table>
<thead>
<tr>
<th>視点</th>
<th>視点位置</th>
<th>住所</th>
<th>景観対象</th>
<th>選定理由</th>
</tr>
</thead>
<tbody>
<tr>
<td>V 3</td>
<td>南吹田2丁目</td>
<td>吹田市南吹田2丁目</td>
<td>高架構造物（中景）</td>
<td>現状は地平な地盤となっている箇所に、現行認可案では盛土を新設する計画であったが、変更案では高架を新設する計画であり、景観が大きく変化する。</td>
</tr>
</tbody>
</table>
予測結果

事業計画路線の構造物の存在に伴う景観の変化の予測結果は、図 に示すとおりである。

評価

景観の評価は、景観形成について十分な配慮がなされていること、環境基本計画、大阪府環境総合計画、自然環境の保全と回復に関する基本方針等、国又は大阪府が定める環境に関する計画又は方針に定める目標の達成と維持に支障を及ぼさないことに基づいて行うこととした。具体的には、吹田市景観まちづくり計画を踏まえた上で、環境影響を回避・低減するための配慮が適正であるかの評価を行うこととした。

事業計画路線の構造物の存在に伴う景観の変化については、現在の開放空間に新たに高架構造物が出現することにより大きな景観変化をもたらすものの、このような施設は通常、都市にみられるものであり、さらに、視界及び居住感が改善するよう、また、鉄道施設が乱雑に見えないよう、住民にとっての身のまわりの景観や地域の街づくりにも配慮した構造物とすることにより、周辺地域の都市景観との調和及び吹田市景観まちづくり計画との整合を図っている。

以上より、景観は周辺環境に著しい影響を及ぼさないものと考えられる。

事業内容の変更に係る検証結果

事業内容の変更に係る景観の比較結果は、図 に示すとおりである。

変更案では、環境影響評価書（平成 年 月）に示す知事意見及び吹田市並びに南吹田まちづくり会議の要望を踏まえ、地域分断の回避、高架下空間の活用、景観上の配慮等を目的として事業計画路線を盛土から高架に変更しており、視界及び居住感について改善された計画となっている。

以上より、事業内容の変更に伴う環境影響の範囲又は程度について、事業内容の変更に伴い周辺地域の都市景観により調和したものになっていると判断した。
完成後の景観

図 現況の景観

図 完成後の景観

現況の景観

完成後の景観（V3視点（南吹田2丁目））
現行認可案の景観

図 事業内容の変更に係る景観の比較

変更案の景観
6．環境の保全のための措置

事業計画路線の存在・供用に係る環境の保全のための措置

本事業の実施に当たっては、施設の存在・供用による環境への影響を最小限にとどめるため、法律、条例等の規制基準を遵守することはもとより、以下に示す環境保全対策を講じることとする。

なお、環境影響評価書（平成 年 月）に記載した「環境の保全のための措置」からの変更項目は、表 に示すとおりである。

水質

水質に関する環境保全対策は、以下に示すとおりである。

駅舎から発生する汚水については、全て公共下水道に放流し、公共用水域への排出は行わない。

騒音

騒音に関する環境保全対策は、以下に示すとおりである。

線路は、急なカーブや分岐部を除いてロングレールを敷設する。

必要に応じ、防音壁の嵩上げ、防音壁の吸音処理等の措置を講じる。

既設線について、必要に応じ、盛土法用に防音壁を設置する。

鋼桁無道床部については、下部覆い工対策を行う。

高架橋の軌道路構造には、弾性マクラギ直結軌道を採用する。

振動

振動に関する環境保全対策は、以下に示すとおりである。

線路は、急なカーブや分岐部を除いてロングレールを敷設する。

高架橋の軌道路構造には、弾性マクラギ直結軌道を採用する。

関連工事区間では、軌道の移設位置について配慮する。

（注）下線部は、環境影響評価書（平成 年 月）からの変更箇所を示す。
低周波音
低周波音に関する環境保全対策は、以下に示すとおりである。

- 跨線路橋については、支柱の設置位置を勘案して可能な範囲で剛性の高いラーメン高架構造を採用する。
- 西吹田駅（仮称）周辺については、剛性の高いラーメン高架構造を採用する。

日照阻害
日照阻害に関する環境保全対策は、以下に示すとおりである。

- 日影の影響が生じる場合には、関係住民等に対して、その内容及び対応について説明し適切な対応を図る。

電波障害
電波障害に関する環境保全対策は、以下に示すとおりである。

- テレビジョン電波の受信障害が発生すると考えられる区域については、CATV加入等による障害防止対策を講じる。
 なお、工事中や構造物の完成後に受信障害の発生が認められる場合には、速やかに障害防止対策を講じる。

景観
景観に関する環境保全対策は、以下に示すとおりである。

- 施設の外観が周辺地域の都市景観と調和するよう形状、色彩に配慮する。
- 盛土の法面等について、樹木も交えた植栽による緑化に努める。

人と自然との触れ合い活動の場
人と自然との触れ合い活動の場に関する環境保全対策は、以下に示すとおりである。

赤川仮橋（人道橋）に関する環境保全対策
赤川仮橋（人道橋）は、日常的な生活道路として、また、水辺空間のレクリエーション目的としても利用されている。
この仮橋（人道橋）は、赤川鉄橋の建設当時（昭和4年）、近辺には下流の長柄橋以外に橋がなかったことから、大阪市が日本国有鉄道（現JR西日本）から未使用部分を借り受けて鉄道敷設までの間、仮設の道路（人道）として使用しているものであり、鉄道敷設の際には借用者である大阪市がこれを撤去することとなっている。

（注）下線部は、環境影響評価書（平成20年2月）からの変更箇所を示す。
現在は、上流側に菅原城北大橋ができており、ならわ自転車道、北大阪周遊自転車道がこれに接続でき、下流側には都市計画道路新庄長柄線の計画があり、河川横断部分の橋梁には歩道が計画されている。

人道橋の撤去に当たっては、撤去に伴う影響を少なくするため、関係先との調整や人道橋利用者に対する十分な周知を行うとともに、水辺空間のレクリエーション利用の支障とならないよう淀川渡河機能の確保について関係機関と協議する。

神崎川の漕艇活動に関する環境保全対策
既設のＪＲ東海道本線及びＪＲ城東貨物線の橋脚の位置を勘案して、漕艇活動の妨げとならないよう神崎川橋梁の橋脚の位置、規模等の配慮に努める。

自転車道に関する環境保全対策
自転車の通行の支障とならないよう神崎川橋梁の設計に配慮する。

廃棄物
廃棄物に関する環境保全対策は、以下に示すとおりである。
駅舎から発生するごみについては、再資源化や適正処理に資するよう分別収集に努める。

地球環境
地球環境に関する環境保全対策は、以下に示すとおりである。
省エネルギー、ごみの減量化、リサイクルの促進等により環境への負荷を低減する。
電車については、回生ブレーキによるエネルギー回収・インバータ制御による省エネルギー車両を採用する。
代替フロンガスについては、駅・電車のクーラーの冷媒として使用する計画であるが、クーラーの維持管理を適切に行うとともに、クーラーが老朽化し、廃棄する際には、代替フロンガスが回収されるよう適正に処分する。
太陽光発電システムについて、調査・研究を進め、その導入に努める。
<table>
<thead>
<tr>
<th>環境項目</th>
<th>環境影響評価書（平成 年 月）に記載した内容</th>
<th>事業内容の変更後の内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>騒音</td>
<td>線路は、急なカーブや分岐部を除いてロングレールを敷設する。</td>
<td>線路は、急なカーブや分岐部を除いてロングレールを敷設する。</td>
</tr>
<tr>
<td></td>
<td>必要に応じ、防音壁の高上げ、防音壁の吸音処理等の措置を講じる。</td>
<td>必要に応じ、防音壁の高上げ、防音壁の吸音処理等の措置を講じる。</td>
</tr>
<tr>
<td></td>
<td>鋼桁無道床部については、下部覆い工対策を行う。</td>
<td>既設線について、必要に応じ、盛土法荷に防音壁を設置する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>鋼桁無道床部については、下部覆い工対策を行う。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>高架橋の軌道構造には、弾性マクラギ直結軌道を採用する。</td>
</tr>
<tr>
<td>振動</td>
<td>線路は、急なカーブや分岐部を除いてロングレールを敷設する。</td>
<td>線路は、急なカーブや分岐部を除いてロングレールを敷設する。</td>
</tr>
<tr>
<td></td>
<td>高架橋の軌道構造には、防振スラブを採用する。</td>
<td>高架橋の軌道構造には、弾性マクラギ直結軌道を採用する。</td>
</tr>
<tr>
<td></td>
<td></td>
<td>関連工事区間では、軌道の移設位置について配慮する。</td>
</tr>
<tr>
<td>低周波音</td>
<td>低周波空気振動の発生源と考えられる高架の延長を可能な限り短くする。</td>
<td>跨線線路橋については、支柱の設置位置を勘案して可能な範囲で剛性の高いラーメン高架構造を採用する。</td>
</tr>
<tr>
<td>景観</td>
<td>施設の外観が周辺地域の都市景観と調和するよう形状、色彩に配慮する。</td>
<td>施設の外観が周辺地域の都市景観と調和するよう形状、色彩に配慮する。</td>
</tr>
<tr>
<td></td>
<td>盛土の法面等について、樹木も交えた植栽による緑化に努める。</td>
<td>盛土の法面等について、樹木も交えた植栽による緑化に努める。</td>
</tr>
<tr>
<td></td>
<td>また、吹田市域のコンクリート擁壁が続く盛土構造区間にについては、今後、吹田市都市景観形成基本計画等も考慮し、関係機関と協議を重ねて住民にとっての身のまわりの景観や地域の街づくりにも配慮した構造物採用に伴う植栽による擁壁の修景方法について検討し、その結果を踏まえ適切な対策を講じることとしている。</td>
<td></td>
</tr>
</tbody>
</table>
事業計画路線の工事の実施に係る環境の保全のための措置

本事業の実施に当たっては、建設工事による環境への影響を最小限にとどめるため、法律、条例等の規定を遵守することをもととして、以下に示す環境保全対策を講じることとする。

なお、環境影響評価書（平成 13年 01月）に記載の環境の保全のための措置からの変更項目は、表【】に示すとおりである。

大気質

大気質に関する環境保全対策は、以下に示すとおりである。

- 建設機械は、排出ガス対策型建設機械を可能な限り使用する。
- 工事の集中を避けるよう工事工程を調整する。
- 乾燥時の飛散防止を計画し、粉じんの飛散防止に努める。
- 工事用運搬車両については、効率的な運行を行うとともに、工事量及び資機材運搬量の平準化により、車両数を削減するよう努める。
- 工事用運搬車両は、出来る限り低排出ガス車を使用する。
- 工事用運搬車両の走行ルートは、最寄りの高速道路のルートを経由するなど一般道路の走行を極力避けるとともに、走行距離をできる限り短くするよう努める。
- 工事現場周辺の細街路における工事用運搬車両の走行ルートの選定や走行時間帯の設定に当たっては、周辺道路の利用状況、住居の立地状況等に十分考慮して行う。
- 工事用運搬車両は、大阪府生活環境の保全等に関する条例の趣旨に則り、駐車中のアイドリングや空発をしない。また、建設機械は、空発やアイドリングを出来る限りしない。

水質・底質

水質・底質に関する環境保全対策は、以下に示すとおりである。

- 神崎川における橋脚の工事については、河川への漂出の流出がないよう矢板で締め切った内部で工事を行い、矢板内の漂出は、漂出処理を行って浄化した後、河川に排水する。
- 矢板の打ち込み・引き抜き時及び矢板内漂出の処理時において、漂出等の監視に万全を期すとともに、必要に応じて川底に石袋を敷き等、矢板外縁部での河床洗掘による底泥の再浮遊防止対策を努める。
- 神崎川における橋脚の工事については、河床の掘削により発生した土砂の汚染状況を測定し、汚染が確認された場合、処理業者に委託し、適切に処理することとする。
- 盛土及び高架工事において降雨により発生する漂出は、沈殿槽等により土砂の流出を防止し、雨水のみを下水道に放流する。

地下水

吹田市域における地下水に関する環境保全対策は、以下に示すとおりである。

- 駅舗及び高架部の基礎杭の工事においては、地盤改良工法（セメント系固化体、ケーシング埋設）
し）を採用することにより地下水汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。

- 地盤の掘削時に湧水が発生したときは水質調査を行い、汚染が確認された場合には処理業者に委託し、再処理分解等により適切に処理する。
- 第2帯水層への汚染の拡大が確認された場合の対応方法については、当該区間の施工着手までに吹田市と事前協議を行う。また、迅速な対応を図るための緊急連絡体制を確立する。

工事による地下水汚染拡散がないことを確認するため、最初に打設する杭を対象としてモニタリングを行う。

騒音
騒音に関する環境保全対策は、以下に示すとおりである。

- 建設機械は、可能な限り低騒音型を採用する。
- 防音シートを設置する。
- 不要な空ふかしやアイドリングをしない。
- 工事用運搬車両の走行は、通勤時間帯を極力避ける。
- 工事用運搬車両の走行ルートは、最寄りの高速道路のランプを経由するなど一般道路の走行を極力避ける。

振動
振動に関する環境保全対策は、以下に示すとおりである。

- 建設機械は、可能な限り低振動型を採用する。
- 振動を抑制する工法に努める。
- 工事用運搬車両の走行は、通勤時間帯を極力避ける。
- 工事用運搬車両の走行ルートは、最寄りの高速道路のランプを経由するなど一般道路の走行を極力避ける。

地盤沈下
地盤沈下に関する環境保全対策は、以下に示すとおりである。

- 神崎川（上流側橋梁）から都島駅までの区間については、地盤の状況は良好であるため、特段の対策は必要ないと考えているが、施工に当たっては、地盤の状況を踏まえ、必要に応じて適切な地盤沈下防止対策を講じる。
- 地下水の汲み上げを行わない。

（注）下線部は、環境影響評価書（平成19年11月）からの変更箇所を示す。
土壌汚染

吹田市域における土壌汚染に関する環境保全対策は、以下に示すとおりである。

- 駐舎及び高架部の基礎杭の工事においては、地盤改良工法（セメント系固化体、ケーシング埋設）を採用することにより土壌汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。
- 地盤の掘削による発生土については土壌汚染調査を行い、汚染が確認された場合は処理業者に委託し、熟処理分解等により適切に処理する。

人と自然との触れ合い活動の場

人と自然との触れ合い活動の場に関する環境保全対策は、以下に示すとおりである。

神崎川河川敷に関する環境保全対策

神崎川付近の工事中において、自転車等の通行の妨げにならないよう迂回路を設けるなど工事着手までに大阪府、大阪市等の関係者と施工方法等について協議を行い、適切に実施する。

神崎川の漕艇活動に関する環境保全対策

神崎川の工事中において、可能な限り漕艇活動に影響を及ぼさないような施工方法を工夫する。具体的な施工方法は、工事着手までに検討し、関係者との協議、調整を行い、適切に実施する。

文化財

文化財に関する環境保全対策は、以下に示すとおりである。

- 工事の実施に当たっては、大阪府教育委員会等の関係機関と協議し、その指導の下に必要な調査を行い、埋蔵文化財の有無を確認し、適切に対応する。
- 工事中に埋蔵文化財を発見した場合には、大阪府教育委員会等に報告・協議を行い適切な保全措置を講じる。

廃棄物・発生土

廃棄物、発生土に関する環境保全対策は、以下に示すとおりである。

- 建設工事により発生する土砂については、できるだけ盛土の増設部への利用等、事業内流用を図る他、「建設副産物対策近畿地方連絡協議会」の工事情報交換システムを活用して、工事間の流用を図ることにより、最終処分量の抑制に努める。
- 建設工事の計画及び設計段階から既設廃棄物の発生の抑制、再生利用等による減量化及び再生材の活用の推進、並びに適正な処理を確保するよう工法または資材の選定及び処理方法の検討を行う。
地球環境

地球環境に関する環境保全対策は、以下に示すとおりである。

- 省エネルギー機器の採用に努める。
- 工事用運搬車両及び建設機械は、不要な空ふかしやアイドリングを行わないよう努める。

表 環境影響評価書（平成 〡年 〢月）に記載した「環境の保全のための措置」からの変更項目

<table>
<thead>
<tr>
<th>環境項目</th>
<th>環境影響評価書（平成 〡年 〢月）に記載した内容</th>
<th>事業内容の変更後の内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下水</td>
<td>駐車及び高架部の基礎杭の工事において地盤改良工法（セメント系固化体、ケーシング埋設）を採用することにより地下水汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。</td>
<td>駐車及び高架部の基礎杭の工事において地盤改良工法（セメント系固化体、ケーシング埋設）を採用することにより地下水汚染を拡大させない。また、セメント系固化体には六価クロムの溶出がないことが確認された材料を使用する。</td>
</tr>
<tr>
<td></td>
<td>地盤の掘削時に漏水が発生したときは水質調査を行い、汚染が確認された場合には処理業者に委託し、熱処理分解等により適切に処理する。</td>
<td>地盤の掘削時に漏水が発生したときは水質調査を行い、汚染が確認された場合には処理業者に委託し、熱処理分解等により適切に処理する。</td>
</tr>
<tr>
<td></td>
<td>第 2 帯水層への汚染の拡大が確認された場合の対応方法については、当該区間の施工着手までに吹田市と事前協議を行う。また、迅速な対応を図るための緊急連絡体制を確立する。</td>
<td>第 2 帯水層への汚染の拡大が確認された場合の対応方法については、当該区間の施工着手までに吹田市と事前協議を行う。また、迅速な対応を図るための緊急連絡体制を確立する。</td>
</tr>
<tr>
<td></td>
<td>工事による地下水汚染拡散がないことを確認するため、最初に打設する杭を対象としてモニタリングを行う。</td>
<td>工事による地下水汚染拡散がないことを確認するため、最初に打設する杭を対象としてモニタリングを行う。</td>
</tr>
</tbody>
</table>
表 環境影響評価書（平成 年 月）に記載した「環境の保全のための措置」からの変更項目

<table>
<thead>
<tr>
<th>環境項目</th>
<th>環境影響評価書（平成 年 月）に記載した内容</th>
<th>事業内容の変更後の内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地盤沈下</td>
<td>盛土を新設する京田地域の区間については、セメント系固材体による地盤改良を行う。地盤沈下防止対策工法のイメージは、図 図に示すとおりであり、セメント系固材体による地盤改良を行う計画である。なお、上層地盤（第1帯水層）は、N値が の冲積砂質土層であることから、地盤改良は上層地盤のみを行う計画であるが、下層の粘性土層のN値が小さく、新設盛土による地盤沈下の可能性がある場合、下層の粘性土層においても対策を講じる。地盤改良の規模、深さについては、建設工事着手前に詳細な検討を行う。</td>
<td>神崎川（上流側橋梁）から都島駅までの区間については、地盤の状況は良好であるため、特段の対策は必要ないと考えているが、施工に当たっては、地盤の状況を踏まえ、必要に応じて適切な地盤沈下防止対策を講じる。</td>
</tr>
<tr>
<td>地下水の汲み上げを行わない。</td>
<td></td>
<td>地下水の汲み上げを行わない。</td>
</tr>
</tbody>
</table>

（注）下線部は、変更箇所を示す。
7. 事後調査の方針

事後調査の方針は、環境影響評価書（平成〇〇年〇〇月）での記載内容と同じである。また、本検討においては、大阪外環状線（新大阪→西吹田）の一部区間における事業内容の変更に際して、鉄道騒音・振動の調査地点等を追加設定したが、事後調査ではこれらに留意して実施する。

「大阪外環状線 新大阪→都島 鉄道建設事業に係る環境影響評価事後調査計画書」（平成〇〇年〇〇月、大阪外環状鉄道株式会社）における主な変更内容は、表 に示すとおりであり、改めて事後調査計画書を提出する。

なお、地下水については、現行認可案では、基礎工事を行う高架区間において実施する計画としていたが、事業内容の変更に伴い、図 に示すとおり高架構造の区間が変更となる。また、平成〇〇年度に吹田市が地下水調査を実施し、地下水汚染分布状況等についてとりまとめが行われている。以上のことから、地下水の事後調査計画については、今後、吹田市と協議を行い、事業内容の変更及び地下水汚染分布状況等の最新の知見を踏まえ、策定することとする。

| 表 事後調査の方針に係る主な変更内容（供用時における調査） |
|---|---|
| | 環境項目 | 事後調査の項目 | 変更項目 | 変更内容 | 変更案 |
| | | | 調査地点 | | |
| 騒音 | 列車の走行に伴う騒音 | 調査地点 | • □ □〜□地点（近接側軌道中心から □□□mの地上 □□□m高さ） | □ □〜□地点（近接側軌道中心から □□□mの地上 □□□m高さ） |
| | | | • □ □地点（事業計画路線に近接した住居） | □ □地点（事業計画路線に近接した住居） |
| | | | • □ □、 □ □、 □ □地点 | □ □、 □ □、 □ □地点 |
| | | | (中高層住居) | (中高層住居) |
| | | | [図 参照] | [図 参照] |
| 振動 | 列車の走行に伴う振動 | 調査地点 | • □ □〜□地点（近接側軌道中心から □□□m） | □ □〜□地点（近接側軌道中心から □□□m） |
| | | | • □ □地点（事業計画路線に近接する住居） | □ □地点（事業計画路線に近接する住居） |
| | | | [図 参照] | [図 参照] |
| 低周波音 | 列車の走行に伴う低周波音 | 調査地点 | • □ □〜□地点（近接側軌道中心から □□□mの地上 □□□m高さ） | □ □〜□地点（近接側軌道中心から □□□mの地上 □□□m高さ） |
| | | | [図 参照] | [図 参照] |

（注）現行認可案における □ □及び □ □地点は、大阪市域（新大阪→神崎川）の地点を示す。
表 事後調査の方針に係る主な変更内容（建設工事中における調査）

<table>
<thead>
<tr>
<th>環境項目</th>
<th>事後調査の項目</th>
<th>変更項目</th>
<th>変更内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>地下水</td>
<td>基礎工事に伴う地下水質及び有機塩素系化合物6物質</td>
<td>調査地点</td>
<td>a l-a 4地点（基礎杭の周縁4方向の調査地点）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>b、c地点（環境影響評価における調査地点）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>新吹田市との協議を行い、事業内容の変更及び地下水汚染分布状況等の最新の知見を踏まえ、策定を行う。</td>
</tr>
<tr>
<td>地盤沈下</td>
<td>地盤高さ</td>
<td>調査地点</td>
<td>新線盛土区間・吹田市域での2地点（A-B地点）</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>新線盛土の両側について、 □盛土法屋、 □事業敷地境界から5m地点、 □事業敷地境界から2m地点の3点ずつとする。</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>新線盛土が構築されないことから、調査対象外とする</td>
</tr>
</tbody>
</table>
図 四四 四列車の走行に伴う騒音・振動・低周波音の調査地点

（注）□□、□□地点は、事業規模の縮小に伴い、調査対象外とする。
8．環境影響評価を委託した者の氏名及び住所

環境影響評価に係る業務は表に示す者に委託して実施した。

<table>
<thead>
<tr>
<th>調査区分等</th>
<th>環境影響評価に係る業務の委託先</th>
</tr>
</thead>
<tbody>
<tr>
<td>評価書作成</td>
<td>中央復建コンサルタンツ株式会社</td>
</tr>
<tr>
<td></td>
<td>代表取締役社長　瀧田　恵二</td>
</tr>
<tr>
<td></td>
<td>大阪市東淀川区東中島４－□□－□□</td>
</tr>
</tbody>
</table>

9．関連法令・条例等による許認可等

本業務の実施に当たり必要となる許認可等は、以下のとおりである。

１　施行認可（鉄道事業法第八条）

鉄道事業者は、国土交通省令に定めるところにより、鉄道線路、停車場その他の国土交通省令で定める鉄道事業の用に供する施設について工事計画を定め、許可の際国土交通省大臣の指定する期限までに工事の施工の認可を申請しなければならない。
本評価書に用いた測量成果は、国土地理院発行の数値地図及び 1万分の 1地形図を使用したものであり、以下に示すとおりである。

<table>
<thead>
<tr>
<th>複製する測量成果の種類及び内容</th>
<th>日</th>
<th>年月日</th>
<th>年月日</th>
</tr>
</thead>
<tbody>
<tr>
<td>☐）数値地図 <空間データ基盤＞ <大阪 11〜大阪 6＞（p 2）</td>
<td>☐）平成9年4月1日発行</td>
<td>☐）平成9年3月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <新大阪＞（p 11〜新大阪25）</td>
<td>☐）平成10年2月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <吹田＞（p 11〜新大阪25）</td>
<td>☐）平成10年3月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <十三＞（p 10）</td>
<td>☐）平成8年2月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <尼崎＞（p 10）</td>
<td>☐）平成8年2月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <尼崎港＞（p 10）</td>
<td>☐）平成8年2月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
<tr>
<td>☐）1万分の1地形図 <西九条＞（p 10）</td>
<td>☐）平成8年2月1日発行</td>
<td>☐）平成8年2月1日発行</td>
<td></td>
</tr>
</tbody>
</table>